Article
Keywords:
pointwise convergence; Lindelöf property
Summary:
We study relations between the Lindelöf property in the spaces of continuous functions with the topology of pointwise convergence over a Tychonoff space and over its subspaces. We prove, in particular, the following: a) if $C_p(X)$ is Lindelöf, $Y=X\cup\{p\}$, and the point $p$ has countable character in $Y$, then $C_p(Y)$ is Lindelöf; b) if $Y$ is a cozero subspace of a Tychonoff space $X$, then $l(C_p(Y)^\omega)\le l(C_p(X)^\omega)$ and $\operatorname{ext}(C_p(Y)^\omega)\le \operatorname{ext}(C_p(X)^\omega)$.
References:
[Ar1] Arhangel'skii A.V.:
On linear topological and topological classification of spaces $C_p(X)$. Zb. Rad. 3 (1989), 3--12.
MR 1017630
[Arh2] Arhangel'skii A.V.:
Topological Function Spaces. Kluwer Acad. Publ. Dordrecht (1992).
MR 1485266
[Buz] Buzyakova R.Z.:
How sensitive is $C_p(X,Y)$ to changes in $X$ and/or $Y$?. Comment. Math. Univ. Carolin. 49 4 (2008), 657--665.
MR 2493945 |
Zbl 1212.54051
[Eng] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, 6, Helderman, Berlin, 1989.
MR 1039321 |
Zbl 0684.54001
[Pol] Pol R.:
A theorem on the weak topology of $C(X)$ for compact scattered $X$. Fund. Math. 106 2 (1980), 135--140.
MR 0580591 |
Zbl 0444.54010
[RJ] Rogers A., Jayne E. (Eds.):
Analytic Sets. Academic Press, London, 1980.
Zbl 0589.54047