Article
Keywords:
vector-valued continuous functions; strict topologies; locally solid topologies; Dini-topologies; strong Mackey space; $\sigma $-additive operators; $\tau $-additive operators
Summary:
Let $X$ be a completely regular Hausdorff space, $E$ a real Banach space, and let $C_b(X,E)$ be the space of all $E$-valued bounded continuous functions on $X$. We study linear operators from $C_b(X,E)$ endowed with the strict topologies $\beta_z$ $(z=\sigma,\tau,\infty,g)$ to a real Banach space $(Y,\|\cdot\|_Y)$. In particular, we derive Banach-Steinhaus type theorems for $(\beta_z,\|\cdot\|_Y)$ continuous linear operators from $C_b(X,E)$ to $Y$. Moreover, we study $\sigma$-additive and $\tau$-additive operators from $C_b(X,E)$ to $Y$.
References:
[KO$_3$] Khurana S.S., Othman S.I.:
Completeness and sequential completeness in certain spaces of measures. Math. Slovaca 45 (1995), no. 2, 163--170.
MR 1357072 |
Zbl 0832.46016
[NR] Nowak M., Rzepka A.:
Locally solid topologies on spaces of vector-valued continuous functions. Comment. Math. Univ. Carolinae 43 (2002), no. 3, 473--483.
MR 1920522 |
Zbl 1068.46023
[SZ] Schaefer H., Zhang X.-D.:
On the Vitali-Hahn-Saks theorem. Oper. Theory Adv. Appl., 75, Birkhäuser, Basel, 1995, pp. 289--297.
MR 1322508 |
Zbl 0830.28007