[1] AGRATINI O.:
An approximation process of Kantorovich type. Math. Notes Miskolac 2 (2001), 3-10.
MR 1854433 |
Zbl 0981.41015
[2] BALAZS K.:
Approximation by Bernstein type rational functions. Acta Math. Acad. Sci. Hungar. 26 (1975), 123-134.
MR 0364958 |
Zbl 0307.41012
[3] BALAZS C.-SZABADOS J.:
Approximation by Bernstein type rational functions II. Acta Math. Acad. Sci. Hungar. 40 (1982), 331-337.
MR 0686333 |
Zbl 0531.41013
[4] GUPTA V.:
Rate of convergence of Durrmeyer type Baskakov-Bezier operators for locally bounded functions. Turkish J. Math. 28 (2004), 271-280.
MR 2095830 |
Zbl 1075.41014
[5] GUPTA V.:
Rate of convergence by the Bezier variant of Phillips operators for bounded variation functions. Taiwanese J. Math. 8 (2004), 183-190.
MR 2061686
[6] GUPTA V.:
The Bezier variant of Kantorovitch operators. Comput. Math. Appl. 47 (2004), 227-232.
MR 2047938 |
Zbl 1053.65098
[7] GUPTA V.:
Degree of approximation to function of bounded variation by Bézier variant of MKZ operators. J. Math. Anal. Appl. 289 (2004), 292-300.
MR 2020544 |
Zbl 1037.41013
[8] GUPTA V.-ABEL U.:
Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators. Int. J. Math. Math. Sci. 2004 (2004), 459-468.
MR 2048792 |
Zbl 1123.41013
[9] GUPTA V.-MAHESHWARI, R:
Bezier variant of a new Durrmeyer type operators. Riv. Mat. Univ. Parma 7 (2003), 9-21.
MR 2031837 |
Zbl 1050.41015
[10] GUPTA V.-VASISHTHA V.-GUPTA M. K.:
An estimate on the rate of convergence of Bezier type summation-integral operators. Kуungpook Math. J. 43 (2003), 345-354.
MR 2003479 |
Zbl 1050.41017
[11] ZENG X. M.:
Bounds for Bernstein basis functions and Meyer-Konig and Zeller basis functions. J. Math. Anal. Appl. 219 (1998), 364-376.
MR 1606338
[12] ZENG X. M.-PIRIOU A.:
On the rate of convergence of two Bernstein-Bezier type operators for functions of bounded variation. J. Approx. Theory 95 (1998), 369-387.
MR 1657687