Previous |  Up |  Next

Article

References:
[1] AGRATINI O.: An approximation process of Kantorovich type. Math. Notes Miskolac 2 (2001), 3-10. MR 1854433 | Zbl 0981.41015
[2] BALAZS K.: Approximation by Bernstein type rational functions. Acta Math. Acad. Sci. Hungar. 26 (1975), 123-134. MR 0364958 | Zbl 0307.41012
[3] BALAZS C.-SZABADOS J.: Approximation by Bernstein type rational functions II. Acta Math. Acad. Sci. Hungar. 40 (1982), 331-337. MR 0686333 | Zbl 0531.41013
[4] GUPTA V.: Rate of convergence of Durrmeyer type Baskakov-Bezier operators for locally bounded functions. Turkish J. Math. 28 (2004), 271-280. MR 2095830 | Zbl 1075.41014
[5] GUPTA V.: Rate of convergence by the Bezier variant of Phillips operators for bounded variation functions. Taiwanese J. Math. 8 (2004), 183-190. MR 2061686
[6] GUPTA V.: The Bezier variant of Kantorovitch operators. Comput. Math. Appl. 47 (2004), 227-232. MR 2047938 | Zbl 1053.65098
[7] GUPTA V.: Degree of approximation to function of bounded variation by Bézier variant of MKZ operators. J. Math. Anal. Appl. 289 (2004), 292-300. MR 2020544 | Zbl 1037.41013
[8] GUPTA V.-ABEL U.: Rate of convergence of bounded variation functions by a Bézier-Durrmeyer variant of the Baskakov operators. Int. J. Math. Math. Sci. 2004 (2004), 459-468. MR 2048792 | Zbl 1123.41013
[9] GUPTA V.-MAHESHWARI, R: Bezier variant of a new Durrmeyer type operators. Riv. Mat. Univ. Parma 7 (2003), 9-21. MR 2031837 | Zbl 1050.41015
[10] GUPTA V.-VASISHTHA V.-GUPTA M. K.: An estimate on the rate of convergence of Bezier type summation-integral operators. Kуungpook Math. J. 43 (2003), 345-354. MR 2003479 | Zbl 1050.41017
[11] ZENG X. M.: Bounds for Bernstein basis functions and Meyer-Konig and Zeller basis functions. J. Math. Anal. Appl. 219 (1998), 364-376. MR 1606338
[12] ZENG X. M.-PIRIOU A.: On the rate of convergence of two Bernstein-Bezier type operators for functions of bounded variation. J. Approx. Theory 95 (1998), 369-387. MR 1657687
Partner of
EuDML logo