Previous |  Up |  Next

Article

References:
[1] CHANG C. C.: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. 88 (1958), 467-490. MR 0094302 | Zbl 0084.00704
[2] CIGNOLI R.-D'OTTAVIANO I. M. L.-MUNDICI D.: Algebraic Foundations of Many-Valued Reasoning. Trends in Logic - Studia Logica Library Vol. 7, Kluwer Acadеmic Publishеrs, Dordrеcht, 2000. MR 1786097 | Zbl 0937.06009
[3] CONRAD P.: Lattice Ordered Groups. Math. Rеs. Library IV, Tulanе Univеrsity, Nеw Orlеans, 1970. Zbl 0258.06011
[4] DARNEL M. R.: Theory of Lattice-Ordered Groups. M. Dеkkеr, Nеw York-Basel-Hong Kong, 1995. MR 1304052 | Zbl 0810.06016
[5] DVUREČENSKIJ A.-PULМANNOVÁ S.: New Trends in Quantum Structures. Kluwer Acad. Publ., Dordrecht, 2000. Zbl 0987.81005
[6] GLUSCHANKOV D.: Cyclic ordered groups and $MV$-algebras. Czechoslovak Math. J. 43 (1993), 249-263. MR 1211747
[7] JAKUBÍK J.: Cantor-Bernstein theorem for lattice ordered groups. Czechoslovak Math. J. 22 (1972), 159-175. MR 0297666 | Zbl 0243.06009
[8] JAKUBÍK J.: Sequential convergences on $MV$-algebras. Czechoslovak Math. J. 45 (1995), 709-726. MR 1354928 | Zbl 0845.06009
[9] JAKUBÍK J.: On complete lattice ordered groups with strong units. Czechoslovak Math. J. 46 (1996), 221-230. MR 1388611 | Zbl 0870.06014
[10] JAKUBÍK J.: On archimedean $MV$-algebras. Czechoslovak Math. J. 48 (1998), 575-582. MR 1637871 | Zbl 0951.06011
[11] JAKUBÍK J.: Complete generators and maximal completions of $MV$-algebras. Czechoslovak Math. J. 48 (1998), 597-608. MR 1637863 | Zbl 0951.06010
[12] JAKUBÍK J.: Cantor-Bernstein theorem for $MV$-algebras. Czechoslovak Math. J. 49 (1999), 517-526. MR 1708370 | Zbl 1004.06011
[13] JAKUBIK J.: Convex isomorphisms of archimedean lattice ordered groups. Mathware Soft Comput. 5 (1998), 49-56. MR 1632739 | Zbl 0942.06008
[14] MUNDICI D.: Interpretation of $AFC^\ast$ -algebras in Łukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15-63. MR 0819173
[15] SCHMIDT J.: Zur Kennzeichnung der Dedekind - Mac Neilleschen Hülle einer geordneten Menge. Arch. Math. (Basel) 7 (1956), 241-249. MR 0084484
[16] SIKORSKI R.: A generalization of theorem of Banach and Cantor-Bernstein. Colloq. Math. 1 (1948), 140-144. MR 0027264
[17] SIKORSKI R.: Boolean Algebras. (2nd ed.), Springer Verlag, Berlin, 1964. MR 0126393 | Zbl 0123.01303
[18] SIMONE A. DE-MUNDICI D.-NAVARA M.: A Cantor-Bernstein theorem for a complete $MV$-algebras. Preprint.
[19] TARSKI A.: Cardinal Algebras. Oxford University Press, New York-London, 1949. MR 0029954 | Zbl 0041.34502
Partner of
EuDML logo