[1] AMBROSETTI A.-RABINOWITZ P. H.:
Dual variational methods in critical point theory and applications. J. Funct. Anal. 14 (1973), 369-381.
MR 0370183 |
Zbl 0273.49063
[2] CHANG K. C.:
Variational methods for non-differentiable functionals and their applications to partial differential equations. J. Math. Anal. Appl. 80 (1981), 102-129.
MR 0614246 |
Zbl 0487.49027
[3] DEGIOVANNI M.:
Bifurcation for odd nonlinear variational inequalities. Ann. Fac. Sci. Toulouse Math. (6) 11 (1990), 39-66.
MR 1191471
[4] DU Y.:
A deformation lemma and some critical point theorems. Bull. Austral. Math. Soc. 43 (1991), 161-168.
MR 1086730 |
Zbl 0714.58008
[5] GHOUSSOUB N.:
A min-max principle with a relaxed boundary condition. Proc. Amer. Math. Soc. 117 (1993), 439-447.
MR 1089405 |
Zbl 0791.49028
[6] GHOUSSOUB N.-PREISS D.:
A general mountain pass principle for locating and classifying critical points. Ann. Inst. H. Poincare. Anal. Non Lineaire 6 (1989), 321-330.
MR 1030853 |
Zbl 0711.58008
[7] HOFER H.:
A note on the topological degree at a critical point of mountainpath-type. Proc. Amer. Math. Soc. 90 (1984), 309-315.
MR 0727256
[8] HULSHOF J.-van der VORST R.:
Differential systems with strongly indefinite variational structure. J. Funct. Anal. 114 (1993), 97-105.
MR 1220982 |
Zbl 0793.35038
[9] KAVIAN O.:
Introduction á la theorie des points critiques et applications aux problémes elliptiques. Mathématiques & Applications 13, Springer Verlag, Paris, 1993.
MR 1276944 |
Zbl 0797.58005
[10] KUBRULSKI R. S.: Variational methods for nonlinear eigenvalue problems. Differential Integral Equations 3 (1990), 923-932.
[11] LEFTER C.-MOTREANU D.:
Critical point theory in nonlinear eigenvalue problems with discontinuities. In.: Internat. Ser. Numer. Math. 107, Birkhäuser Verlag, Basel, 1992, pp. 25-36.
MR 1223355
[12] MOTREANU D.:
Existence for minimization with nonconvex constraints. J. Math. Anal. Appl. 117 (1986), 128-137.
MR 0843009 |
Zbl 0599.49008
[13] MOTREANU D.-PANAGIOTOPOULOS P. D.:
Hysteresis: the eigenvalue problem for hemivariational inequalities. In: Models of Hysteresis, Longman Scient. PubL, Harlow, 1993, pp. 102-117.
MR 1235118 |
Zbl 0801.49027
[14] PALAIS R. S.:
Lusternik-Schnirelman theory on Banach manifolds. Topology 5 (1966), 115-132.
MR 0259955 |
Zbl 0143.35203
[15] PALAIS R. S.-TERNG C. L.:
Critical Point Theory and Submanifold Geometry. Lecture Notes in Math. 1353, Springer Verlag, Berlin, 1988.
MR 0972503 |
Zbl 0658.49001
[16] RABINOWITZ P. H.:
Variational methods for nonlinear eigenvalue problems. In: Eigenvalues of Nonlinear Problems (G. Prodi, ed.), C.I.M.E., Edizioni Cremonese, Roma, 1975, pp. 141-195.
MR 0464299
[17] RABINOWITZ P. H.:
Minimax Methods in Critical Point Theory With Applications to Differential Equations. CBMS Regional Conf. Ser. in Math. 65, Amer.Math.Soc, Providence, R.I., 1986.
MR 0845785 |
Zbl 0609.58002
[18] RAUCH J.:
Discontinuous semilinear differential equations and multiple valued maps. Proc. Amer. Math. Soc. 64 (1977), 277-282.
MR 0442453 |
Zbl 0413.35031
[19] SCHECHTER M.-TINTAREV K.:
Spherical maxima in Hilbert space and semilinear elliptic eigenvalue problems. Differential Integral Equations 3 (1990), 889-899.
MR 1059337 |
Zbl 0727.35105
[20] SCHECHTER M.-TINTAREV K.:
Points of spherical maxima and solvability of semilinear elliptic equations. Canad. J. Math. 43 (1991), 825-831.
MR 1127032 |
Zbl 0755.35083
[21] SZULKIN A.:
Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann. Inst. H. Poincaré Anal. Non Lineaire 3 (1986), 77-109.
MR 0837231 |
Zbl 0612.58011
[22] SZULKIN A.:
Ljusternik-Schnirelman theory on $C^1$-manifold. Ann. Inst. H. Poincaré Anal Non Linéaire 5 (1988), 119-139.
MR 0954468
[23] WANG T.:
Ljusternik-Schnirelman category theory on closed subsets of Banach manifolds. J. Math. Anal. Appl. 149 (1990), 412-423.
MR 1057683
[24] ZEIDLER E.:
Ljusternik-Schnirelman theory on general level sets. Math. Nachr. 129 (1986), 235-259.
MR 0864637 |
Zbl 0608.58014