Previous |  Up |  Next

Article

Title: Weak isometries and direct decompositions of dually residuated lattice ordered semigroups (English)
Author: Jasem, Milan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 2
Year: 1993
Pages: 119-136
.
Category: math
.
MSC: 06F05
idZBL: Zbl 0782.06012
idMR: MR1274597
.
Date available: 2009-09-25T10:46:37Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136577
.
Reference: [1] BIRKHOFF G.: Lattice Theory.Amer. Math. Soc. Colloq. Publ. 25. (3rd ed.), Amer. Math. Soc., Providence, RI, 1967. Zbl 0153.02501, MR 0227053
Reference: [2] HOLLAND, CH.: Intrinsic metrics for lattice ordered groups.Algebra Universalis 19 (1984), 142-150. Zbl 0557.06011, MR 0758313
Reference: [3] JAKUBÍK J.: Isometries of lattice ordered groups.Czechoslovak Math. J. 30 (1980), 142-152. Zbl 0436.06013, MR 0565917
Reference: [4] JAKUBÍK J.: On isometries of non-abelian lattice ordered groups.Math. Slovaca 31 (1981), 171-175. Zbl 0457.06014, MR 0611629
Reference: [5] JAKUBÍK J.: Weak isometries of lattice ordered groups.Math. Slovaca 38 (1988), 133-138. Zbl 0642.06009, MR 0945366
Reference: [6] JAKUBÍK J., KOLIBIAR M.: Isometries of multilattice groups.Czechoslovak Math. J. 33 (1983), 602-612. Zbl 0538.06018, MR 0721089
Reference: [7] JASEM M.: Isometries in Riesz groups.Czechoslovak Math. J. 36 (1986), 35-43. Zbl 0603.06007, MR 0822864
Reference: [8] JASEM M.: On weak isometries in multilattice groups.Math. Slovaca 40 (1990), 337-340. Zbl 0753.06015, MR 1120964
Reference: [9] JASEM M.: Weak isometries and isometries in partially ordered groups.(Submitted).
Reference: [10] JASEM M.: Isometries in non-abelian multilattice groups.Czechoslovak Math. J., (To appear). Zbl 0890.06012, MR 1451037
Reference: [11] POWELL W. B.: On isometries in abelian lattice ordered groups.J. Indian Math. Soc. 46 (1982), 189-194. MR 0878072
Reference: [12] RACHŮNEK J.: Isometries in ordered groups.Czechoslovak Math. J. 34 (1984), 334-341. Zbl 0558.06020, MR 0743498
Reference: [13] SWAMY K. L. N.: A general theory of autometrized algebras.Math. Ann. 157 (1964), 65-74. Zbl 0135.02602, MR 0170842
Reference: [14] SWAMY K. L. N.: Dually residuated lattice ordered semigroups.Math. Ann. 159 (1965), 105-114. Zbl 0138.02104, MR 0183797
Reference: [15] SWAMY K. L. N.: Dually residuated lattice ordered semigroups. II.Math. Ann. 160 (1965), 64-71. Zbl 0138.02104, MR 0191851
Reference: [16] SWAMY K. L. N.: Dually residuated lattice ordered semigroups. III.Math. Ann. 167 (1966), 71-74. Zbl 0158.02601, MR 0200364
Reference: [17] SWAMY K. L. N.: Isometries in autometrized lattice ordered groups.Algebra Universalis 8 (1978), 59-64. Zbl 0409.06007, MR 0463074
Reference: [18] SWAMY K. L. N.: Isometries in autometrized lattice ordered groups. II.Math. Seminar Notes Kobe Univ. 5 (1977), 211-214. Zbl 0457.06015, MR 0463075
Reference: [19] SWAMY K. L. N., SUBBA RAO B. V.: Isometries in dually residuated lattice ordered semigroups.Math. Seminar Notes Kobe Univ. 8 (1980), 369-379. MR 0601906
Reference: [20] TRIAS J.: Lattice isometries in Riesz spaces.Preprint, Univ. Politecnica Barcelona. (1981).
.

Files

Files Size Format View
MathSlov_43-1993-2_2.pdf 994.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo