Previous |  Up |  Next

Article

Title: Initial and boundary value problems for $n$-th order difference equations (English)
Author: Agarwal, Ravi P.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 36
Issue: 1
Year: 1986
Pages: 39-47
.
Category: math
.
MSC: 39A10
MSC: 65Q05
idZBL: Zbl 0589.39005
idMR: MR832369
.
Date available: 2009-09-25T09:51:21Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136413
.
Reference: [1] AGARWAL R. P.: On multi-point boundaгy value pгoblems for diffeгence equations.J. Math. Anal. Appl. (to appear)
Reference: [2] AGARWAL R. P.: Initial-value methods foг discrete boundary value pгoblems.J. Math. Anal. Appl. (to appear)
Reference: [3] AGARWAL R. P.: Computational methods for discrete boundaгy value pгoblems.Appl. Math. Comp. (to appeaг)
Reference: [4] AGARWAL R. P.: Diffeгence calculus with applications to diffeгence equations.Pгoc. Conf. ,,Geneгal Inequalities 4" Obeгwolfach (to appeaг)
Reference: [5] AGARWAL R. P.: Pгopeгties of solutions of higheг oгdeг nonlinear difference equations.An. Ati. Univ. "Al I. Cuza" Iasi (to appeaг)
Reference: [6] AGARWAL R. P.: On some new disсrete inequalities.Appl. Math. Comp. 7, 1980, 205-224. MR 0594270
Reference: [7] AGARWAL R. P.: Best possible length estimates foг nonlineaг boundaгy value pгoblems.Bull. Inst. Math. Acad. Sinica 9, 1981, 169-177. MR 0625712
Reference: [8] BEYN W. J.: Discгete Gгeen's functions and stгong stability pгopeгties of the finite diffeгence method.Applicable Anal. 14, 1982, 73-98. MR 0678496
Reference: [9] ELOE P. W.: Diffeгence equations and multipoint boundaгy value pгoblem.Pгoc. Ameг. Math. Soc. 86, 1982, 253-259. MR 0667284
Reference: [10] ESSER H.: Stability inequalities for discrete nonlinear two-point boundary value problems.Applicable Anal. 10, 1980, 137-162. Zbl 0445.65078, MR 0575540
Reference: [11] GAINES R.: Difference equations with boundary value problems for second order nonlinear ordinary differential equations.SIAM J. Num. Anal. 11, 1974, 411-433. MR 0383757
Reference: [12] HARTMAN P.: Difference equations, disconjugacy, principle solutions, Green's functions, complete monotonicity.Trans. Amer. Math. Soc. 246, 1978, 1-30. MR 0515528
Reference: [13] PETERSON A. C.: Existence-uniqueness for two-point boundary value problems for nth order nonlinear differencial equations.The Rocky Mountain Journal of Math. 7, 1977, 103-109. MR 0454133
Reference: [14] ŠEDA V.: Two remarks on boundary value problems for ordinary differential equations.J. Diff. Eqs. 26, 1977, 278-290. Zbl 0419.34014, MR 0460771
Reference: [15] SFICAS Y. G., NTOUYAS S. K.: A boundary value problem for nth' order functional differential equations.Nonlinear Analysis, TMA 5, 1981, 325-335. MR 0607814
.

Files

Files Size Format View
MathSlov_36-1986-1_5.pdf 585.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo