Previous |  Up |  Next

Article

Title: Gleason theorem for signed measures with infinite values (English)
Author: Dvurečenskij, Anatolij
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 35
Issue: 4
Year: 1985
Pages: 319-325
.
Category: math
.
MSC: 06C20
MSC: 46L51
MSC: 46L53
MSC: 46L54
idZBL: Zbl 0584.46053
idMR: MR820628
.
Date available: 2009-09-25T09:48:45Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136401
.
Reference: [1] DRISCH T.: Generalization of Gleason's theorem.Inter. J. Theor. Phys., 18, 1979, 4, 239-243. Zbl 0452.46036, MR 0552434
Reference: [2] DVUREČENSKIJ A.: Signed measures on a logic.Math. Slovaca, 28, 1978, 1, 33-40. MR 0527772
Reference: [3] DVUREČENSKIJ A.: On convergence of signed states.Math. Slovaca, 21, 1978, 3, 289-295. MR 0534996
Reference: [4] EILERS M., HORST E.: The theorem of Gleason for nonseparable Hilbert spaces.Inter. J. Theor. Phys. 13, 1975, 6, 419-424. MR 0389054
Reference: [5] GLEASON A. M.: Measuгes on the closed substaces of a Hilbert space.J. Math. Mech. 6,1957, 6, 885-893. MR 0096113
Reference: [6] ШEPCTHEB A. H., ЛУГOBAЯ Г. Д.: O тeopeмe Глизoнa для нeoгpaничeнныx мep.Изв. Byзoв. Maтeм. 1980, Ho. 12, 30-32.
Reference: [7] ШEPCTHEB A. H.: O пpeдcтaвлeнии мep, зaдaнныx нa opтoпpoeктopax пpocтpaнcтвa Гильбepтa, билинeйными фopмaми.Изв. Byзoв. Maтeм., 1970, № 9, 90-97.
Reference: [8] ШEPCTHEB A. H.: O пoнятии зapядa в нeкoммyтaтивнoй cxeмe тeopии мepы.Bepoятнocтныe мeтoды и кибepнeтикa, JЧs 10-11, Kaзaнь, КГЧ, 1974, 68-72.
.

Files

Files Size Format View
MathSlov_35-1985-4_2.pdf 469.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo