[2] Cuculescu I., Theodorescu R.:
Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742
MR 1929521
[7] Janssens S., Baets, B. De, Meyer H. De:
Bell-type inequalities for quasi-copulas. Fuzzy Sets Syst. 148 (2004), 263–278
MR 2100199 |
Zbl 1057.81011
[8] Klement E. P., Kolesárová A.:
1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals. In: Soft Methodology and Random Information Systems (M. López-Díaz, M.A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211
MR 2118098 |
Zbl 1071.62048
[9] Klement E. P., Kolesárová A.:
Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348
MR 2181422
[11] Kolesárová A.:
1-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629
MR 2042344
[14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.:
Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez, eds.), Kluwer, Dordrecht 2002, pp. 179–185
MR 2058991 |
Zbl 1135.62338
[17] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.:
Derivability of some operations on distribution functions. In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), CA: IMS Lecture Notes – Monograph Series Number 28), Hayward 1996, pp. 233–243
MR 1485535
[20] Rodríguez-Lallena J. A., Úbeda-Flores M.:
Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33 (2004), 805–820
MR 2042768 |
Zbl 1066.62056
[21] Rodríguez-Lallena J. A., Úbeda-Flores M.:
Compatibility of three bivariate quasi-copulas: Applications to copulas. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Springer, Berlin 2004, pp. 173–180
MR 2118094 |
Zbl 1064.62060
[22] Rodríguez-Lallena J. A., Úbeda-Flores M.:
Multivariate copulas with quadratic sections in one variable. To appear
MR 2746580 |
Zbl 1197.62051
[23] Rodríguez-Lallena J. A., Úbeda-Flores M.:
Some new characterizations and properties of quasi-copulas. To appear in Fuzzy Sets and Systems.doi: 10.1016/j.fss.2008.02.007
MR 2493270 |
Zbl 1175.62048
[24] Saminger S., Baets, B. De, Meyer H. De:
On the dominance relation between ordinal sums of conjunctors. Kybernetika 42 (2006), 337–350
MR 2253393
[25] Sklar A.:
Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231
MR 0125600
[26] Sklar A.:
Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460
MR 0345164
[27] Úbeda-Flores M.:
A new family of trivariate proper quasi-copulas. Kybernetika 43 (2007), 75–85
MR 2343332 |
Zbl 1131.62048