Previous |  Up |  Next

Article

Keywords:
1-Lipschitz condition; copula; quasi-copula; quadratic sections
Summary:
We introduce and characterize the class of multivariate quasi-copulas with quadratic sections in one variable. We also present and analyze examples to illustrate our results.
References:
[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 DOI 10.1016/0167-7152(93)90001-Y | MR 1223530 | Zbl 0798.60023
[2] Cuculescu I., Theodorescu R.: Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 MR 1929521
[3] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Extremes of the mass distribution associated with a trivariate quasi-copula. C. R. Acad. Sci. Paris, Ser. I 344 (2007), 587–590 DOI 10.1016/j.crma.2007.03.026 | MR 2323747 | Zbl 1131.62044
[4] Baets B. De, Meyer H. De, Schuymer, B. De, Jenei S.: Cyclic evaluation of transitivity of reciprocal relations. Soc. Choice Welf. 26 (2006), 217–238 DOI 10.1007/s00355-006-0093-3 | MR 2226508 | Zbl 1158.91338
[5] Durante F., Quesada-Molina J. J., Úbeda-Flores M.: On a family of multivariate copulas for aggregation processes. Inform. Sci. 177 (2007), 5715–5724 DOI 10.1016/j.ins.2007.07.019 | MR 2362216 | Zbl 1132.68761
[6] Genest C., Quesada-Molina J. J., Rodríguez-Lallena J.A., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 DOI 10.1006/jmva.1998.1809 | MR 1703371 | Zbl 0935.62059
[7] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets Syst. 148 (2004), 263–278 MR 2100199 | Zbl 1057.81011
[8] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals. In: Soft Methodology and Random Information Systems (M. López-Díaz, M.A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 MR 2118098 | Zbl 1071.62048
[9] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1-Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348 MR 2181422
[10] Klement E. P., Kolesárová A.: Intervals of 1-Lipschitz aggregation operators, quasi-copulas, and copulas with given affine section. Monatsh. Math. 152 (2007), 151–167 DOI 10.1007/s00605-007-0460-x | MR 2346431 | Zbl 1138.60016
[11] Kolesárová A.: 1-Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 MR 2042344
[12] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 MR 2197664 | Zbl 1152.62030
[13] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. C. R. Acad. Sci. Paris, Ser. I 341 (2005), 583–586 DOI 10.1016/j.crma.2005.09.026 | MR 2182439 | Zbl 1076.62053
[14] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez, eds.), Kluwer, Dordrecht 2002, pp. 179–185 MR 2058991 | Zbl 1135.62338
[15] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 DOI 10.1016/j.jmva.2003.09.002 | MR 2081783 | Zbl 1057.62038
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance: Math. Econom. 42 (2008), 473–483 DOI 10.1016/j.insmatheco.2006.11.011 | MR 2404309 | Zbl 1152.60311
[17] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions. In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), CA: IMS Lecture Notes – Monograph Series Number 28), Hayward 1996, pp. 233–243 MR 1485535
[18] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Bivariate copulas with quadratic sections. J. Nonparametr. Statist. 5 (1995), 323–337 DOI 10.1080/10485259508832652 | MR 1379534 | Zbl 0857.62060
[19] Quesada-Molina J. J., Saminger-Platz, S., Sempi C.: Quasi-copulas with a given sub-diagonal section. Nonlinear Anal. 69 (2008), 4654–4673 DOI 10.1016/j.na.2007.11.021 | MR 2467261 | Zbl 1151.62044
[20] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33 (2004), 805–820 MR 2042768 | Zbl 1066.62056
[21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Springer, Berlin 2004, pp. 173–180 MR 2118094 | Zbl 1064.62060
[22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate copulas with quadratic sections in one variable. To appear MR 2746580 | Zbl 1197.62051
[23] Rodríguez-Lallena J. A., Úbeda-Flores M.: Some new characterizations and properties of quasi-copulas. To appear in Fuzzy Sets and Systems.doi: 10.1016/j.fss.2008.02.007 MR 2493270 | Zbl 1175.62048
[24] Saminger S., Baets, B. De, Meyer H. De: On the dominance relation between ordinal sums of conjunctors. Kybernetika 42 (2006), 337–350 MR 2253393
[25] Sklar A.: Fonctions de répartition à $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
[26] Sklar A.: Random variables, joint distributions, and copulas. Kybernetika 9 (1973), 449–460 MR 0345164
[27] Úbeda-Flores M.: A new family of trivariate proper quasi-copulas. Kybernetika 43 (2007), 75–85 MR 2343332 | Zbl 1131.62048
Partner of
EuDML logo