[2] Alsina C., Frank, M. J, Schweizer B.:
Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006
MR 2222258 |
Zbl 1100.39023
[3] Deheuvels P.:
La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292
MR 0573609 |
Zbl 0422.62037
[4] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[5] Klement E. P., Mesiar R.:
Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005
MR 2166082 |
Zbl 1063.03003
[6] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.:
Discrete copulas. IEEE Trans. Fuzzy Systems. 14 (2006), 698–705
DOI 10.1109/TFUZZ.2006.880003
[8] Mayor G., Suñer, J., Torrens J.:
Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477
DOI 10.1109/TFUZZ.2004.840129
[9] Mayor G., Suñer, J., Torrens J.:
Sklar’s Theorem in finite settings. IEEE Trans. Fuzzy Systems 15 (2007), 410–416
DOI 10.1109/TFUZZ.2006.882462
[10] Mesiar R.: Discrete copulas – what they are. In: Joint EUSFLAT-LFA 2005, Conference Proceedings (E. Montseny and P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930
[14] Skiena S.:
The cycle structure of permutations. In: Implementing Discrete Mathematics: Combinatorial and Graph Theory with Mathematica. Addison-Wesley, Reading, MA 1990, pp. 20–24
MR 1061378