Previous |  Up |  Next

Article

Keywords:
discrete copulas; r-symmetric permutations; independence
Summary:
In this paper we analyze some properties of the discrete copulas in terms of permutations. We observe the connection between discrete copulas and the empirical copulas, and then we analyze a statistic that indicates when the discrete copula is symmetric and obtain its main statistical properties under independence. The results obtained are useful in designing a nonparametric test for symmetry of copulas.
References:
[1] Aguiló I., Suñer, J., Torrens J.: Matrix representation of discrete quasi-copulas. Fuzzy Sets and Systems 159 (2008), 1658–1672 DOI 10.1016/j.fss.2007.10.004 | MR 2419976
[2] Alsina C., Frank, M. J, Schweizer B.: Associative Functions: Triangular Norms and Copulas. World Scientific Publishing Co., Singapore 2006 MR 2222258 | Zbl 1100.39023
[3] Deheuvels P.: La fonction de dépendance empirique et ses propriétés. Un test non paramétrique d’indépendance. Acad. Roy. Belg. Bull. Cl. Sci. 65 (1979), 5, 274–292 MR 0573609 | Zbl 0422.62037
[4] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[5] Klement E. P., Mesiar R.: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms. Elsevier, Amsterdam 2005 MR 2166082 | Zbl 1063.03003
[6] Kolesárová A., Mesiar R., Mordelová, J., Sempi C.: Discrete copulas. IEEE Trans. Fuzzy Systems. 14 (2006), 698–705 DOI 10.1109/TFUZZ.2006.880003
[7] Kolesárová A., Mordelová J.: Quasi-copulas and copulas on a discrete scale. Soft Computing 10 (2006), 495–501 DOI 10.1007/s00500-005-0524-6 | Zbl 1096.60012
[8] Mayor G., Suñer, J., Torrens J.: Copula-like operations on finite settings. IEEE Trans. Fuzzy Systems 13 (2005), 468–477 DOI 10.1109/TFUZZ.2004.840129
[9] Mayor G., Suñer, J., Torrens J.: Sklar’s Theorem in finite settings. IEEE Trans. Fuzzy Systems 15 (2007), 410–416 DOI 10.1109/TFUZZ.2006.882462
[10] Mesiar R.: Discrete copulas – what they are. In: Joint EUSFLAT-LFA 2005, Conference Proceedings (E. Montseny and P. Sobrevilla, eds.) Universitat Politecnica de Catalunya, Barcelona 2005, pp. 927–930
[11] Miller W.: The maximum order of an element of a finite symmetric group. Amer. Math. Monthly 94 (1987), 6, 497–506 DOI 10.2307/2322839 | MR 0935414 | Zbl 1191.11027
[12] Nelsen R. B.: An Introduction to Copulas. Second edition. Springer, New York 2006 MR 2197664 | Zbl 1152.62030
[13] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North-Holland, New York 1983 MR 0790314 | Zbl 0546.60010
[14] Skiena S.: The cycle structure of permutations. In: Implementing Discrete Mathematics: Combinatorial and Graph Theory with Mathematica. Addison-Wesley, Reading, MA 1990, pp. 20–24 MR 1061378
Partner of
EuDML logo