Previous |  Up |  Next

Article

Keywords:
multiobjective optimization; receding horizon control; robust control; stability
Summary:
This paper deals with a multiobjective control problem for nonlinear discrete time systems. The problem consists of finding a control strategy which minimizes a number of performance indexes subject to state and control constraints. A solution to this problem through the Receding Horizon approach is proposed. Under standard assumptions, it is shown that the resulting control law guarantees closed-loop stability. The proposed method is also used to provide a robustly stabilizing solution to the problem of simultaneously minimizing a set of $H_{\infty }$ cost functions for a class of systems subject to bounded disturbances and/or parameter uncertainties. Numeric examples are reported to highlight the stabilizing action of the proposed control laws.
References:
[1] Allgöwer F., Badgwell T. A., Qin J. S., Rawlings J. B., Wright S. J.: Nonlinear predictive control and moving horizon estimation – an introductory overview. In: Advances in Control (P. M. Frank, ed.), Springer–Verlag, Berlin 1999, pp. 391–449
[2] Borisson U.: Self-tuning regulators for a class of multivariable systems. Automatica 15 (1979), 209–215
[3] Nicolao G. De, Magni, L., Scattolini R.: Stability and robustness of nonlinear receding-horizon control. In: Nonlinear Model Predictive Control (F. Allgöwer and A. Zheng, eds.), Birkhäuser Verlag, Basel 2000 MR 1756662 | Zbl 0958.93512
[4] Karbowski A.: Optimal infinite-horizon multicriteria feedback control of stationary systems with minimax objectives and bounded disturbances. J. Optim. Theory Appl. 101 (1999), 59–71 MR 1685591 | Zbl 0945.90055
[5] Lazar M., Heelmes W. P. M. H., Bemporad, A., Weiland S.: Discrete-time non-smooth nonlinear MPC: stability and robustness. In: Assessment and Future Directions of Nonlinear Model Predictive Control (Lecture Notes in Control and Information Science 358; R. Findeisen, F. Allgöwer and L. T. Biegler, eds.), Springer–Verlag, Berlin 2007, pp. 93–103 MR 2252836
[6] Li, Duan: On the minimax solution of multiple linear-quadratic problems. IEEE Trans. Automat. Control 35 (1990), 59–71 MR 1073261 | Zbl 0721.49034
[7] Maciejowski J.: Predictive Control with Constraints. Prentice-Hall, N.J. 2001 Zbl 0978.93002
[8] Magni L., Nicolao G. De, Scattolini, R., Allgöwer F.: Robust model predictive control of nonlinear discrete-time systems. Internat. J. Robust and Nonlinear Control 13 (2003), 229–246 MR 1973635
[9] Magni L., Raimondo D. M., Scattolini R.: Regional input-to-state stability for nonlinear model predictive control. IEEE Trans. Automat. Control 51 (2006), 1548–1553 MR 2260135
[10] Scattolini R.: Multi-rate self-tuning predictive controller for multi-variable systems. Internat. J. Systems Sci. 23 (1993), 1347–1359 MR 1179989
[11] Shtessel Y. B.: Principle of proportional damages in a multiple criteria LQR problem. IEEE Trans. Automat. Control 41 (1996), 461–464 MR 1383000 | Zbl 0966.49501
Partner of
EuDML logo