[1] Chen A. M., Lu J. A., Lü J. H., Yu S. M.: Generating hyperchaotic Lü attractor via state feedback control. Physica A 364 (2006), 103–110
[2] Wolf A., Swift J. B., Swinney H. L., Vastano J. A.:
Determining Lyapunov exponents from a time series. Physica D 16 (1985), 285–317
MR 0805706 |
Zbl 0585.58037
[3] Wei J. J., Ruan S. G.:
Stability and bifurcation in a neural network model with two delays. Physica D 130 (1999), 255–272
MR 1692866 |
Zbl 1066.34511
[4] Briggs K.:
An improved method for estimating Liapunov exponents of chaotic time series. Phys. Lett. A 151 (1990), 27–32
MR 1085170
[5] Cooke K. L., Grossman Z.:
Discrete delay, distribute delay and stability switches. J. Math. Anal. Appl. 86 (1982), 592–627
MR 0652197
[6] Olien L., Belair J.:
Bifurcation, stability and monotonicity properities of a delayed neural network model. Physica D 102 (1997), 349–363
MR 1439692
[7] Heyes N. D.:
Linear autonomous neutral functional differential equations. J. Differential Equations 15 (1974), 106–128
MR 0338520
[8] Jia Q.:
Hyperchaos generated from the Lorenz chaotic system and its control. Phys. Lett. A 366 (2007), 217–222
Zbl 1203.93086
[9] Datko R.:
A procedure for determination of the exponential stability of certain differential difference equations. Quart. Appl. Math. 36 (1978), 279–292
MR 0508772 |
Zbl 0405.34051
[10] Wu X. J.: Chaos synchronization of the new hyperchaotic Chen system via nonlinear control. Acta Phys. Sinica 22 (2006), 12, 6261–6266