[1] Beneš M.:
Numerical solution for surface diffusion on graphs. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University Fukuoka 2006, pp. 9–25
MR 2279046
[2] Deckelnick K., Dziuk G.:
Error estimates for the Willmore flow of graphs. Interfaces Free Bound. 8 (2006), 21–46
DOI 10.4171/IFB/134 |
MR 2231251
[4] Du Q., Liu C., Ryham, R., Wang X.:
A phase field formulation of the Willmore problem. Nonlinearity (2005), 18, 1249–1267
MR 2134893 |
Zbl 1125.35366
[5] Du Q., Liu, C., Wang X.:
A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. (2004), 198, 450–468
MR 2062909
[6] Dziuk G., Kuwert, E., Schätzle R.:
Evolution of elastic curves in $\mathbb R\mathnormal ^n$: Existence and Computation. SIAM J. Math. Anal. 41 (2003), 6, 2161–2179
MR 2034610
[7] Kuwert E., Schätzle R.:
The Willmore flow with small initial energy. J. Differential Geom. 57 (2001), 409–441
MR 1882663 |
Zbl 1035.53092
[8] Minárik V., Kratochvíl, J., Mikula K.: Numerical simulation of dislocation dynamics by means of parametric approach. In: Proc. Czech Japanese Seminar in Applied Mathematics (M. Beneš, J. Mikyška, and T. Oberhuber, eds.), Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague 2005, pp. 128–138
[9] Oberhuber T.: Computational study of the Willmore flow on graphs. Accepted to the Proc. Equadiff 11, 2005
[10] Oberhuber T.:
Numerical solution for the Willmore flow of graphs. In: Proc. Czech–Japanese Seminar in Applied Mathematics 2005 (M. Beneš, M. Kimura and T. Nakaki, eds.), COE Lecture Note Vol. 3, Faculty of Mathematics, Kyushu University Fukuoka, October 2006, ISSN 1881-4042, pp. 126–138
MR 2279053 |
Zbl 1145.65323
[11] Simonett G.:
The Willmore flow near spheres. Differential and Integral Equations 14 (2001), No. 8, 1005–1014
MR 1827100 |
Zbl 1161.35429