[1] Catté F., Lions P. L., Morel J. M., Coll T.:
Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 129 (1991), 182–193
MR 1149092
[2] Coirier W. J.: An a Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. PhD Thesis, Michigan Univ. NASA Lewis Research Center, 1994
[3] Coirier W. J., Powell K. G.: A cartesian, cell-based approach for adaptive-refined solutions of the Euler and Navier–Stokes equations. AIAA 1995
[4] Coudiere Y., Vila J. P., Villedieu P.:
Convergence rate of a finite volume scheme for a two-dimensional convection-diffusion problem. M2AN Math. Model. Numer. Anal. 33 (1999), 493–516
DOI 10.1051/m2an:1999149 |
MR 1713235 |
Zbl 0937.65116
[6] Eymard R., Gallouët, T., Herbin R.:
Finite Volume Methods. In: Handbook for Numerical Analysis, Vol. 7 (Ph. Ciarlet, J. L. Lions, eds.), Elsevier, Amsterdam 2000
MR 1804748 |
Zbl 1191.65142
[7] Guichard F., Morel J. M.: Image Analysis and P. D.E.s. IPAM GBM Tutorials, 2001
[8] Handlovičová A., Mikula, K., Sgallari F.:
Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution. Numer. Math. 93 (2003), 675–695
DOI 10.1007/s002110100374 |
MR 1961884 |
Zbl 1065.65105
[11] Weickert J., Scharr H.:
A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Visual Comm. and Image Repres. 13 (2002), 1–2, 103–118
DOI 10.1006/jvci.2001.0495