[1] Ahmane M., Ledoux, J., Truffet L.: Criteria for the comparison of discrete-time Markov chains. In: 13th Internat. Workshop on Matrices and Statistics in Celebration of I. Olkin’s 80th Birthday, Poland, August 18-21, 2004
[2] Ahmane M., Ledoux, J., Truffet L.:
Positive invariance of polyhedrons and comparison of Markov reward models with different state spaces. In: Proc. Positive Systems: Theory and Applications (POSTA’06), Grenoble 2006 (Lecture Notes in Control and Information Sciences 341), Springer–Verlag, Berlin, pp. 153–160
MR 2250251 |
Zbl 1132.93333
[3] Ahmane M., Truffet L.: State feedback control via positive invariance for max-plus linear systems using $\Gamma $-algorithm. In: 11th IEEE Internat. Conference on Emerging Technologies and Factory Automation, ETFA’06, Prague 2006
[4] Ahmane M., Truffet L.: Sufficient condition of max-plus ellipsoidal invariant set and computation of feedback control of discrete events systems. In: 3rd Internat. Conference on Informatics in Control, Automation and Robotics, ICINCO’06, Setubal 2006
[5] Aubin J.-P.:
Viability Theory. Birkhäuser, Basel 1991
MR 1134779
[6] Baccelli F., Cohen G., Olsder G. J., Quadrat J.-P.:
Synchronization and Linearity. Wiley, New York 1992
MR 1204266 |
Zbl 0824.93003
[7] Bertsekas D. P., Rhodes I. B.:
On the minimax reachability of target sets and target tubes. Automatica 7 (1971), 233–247
MR 0322648 |
Zbl 0215.21801
[9] Braker J. G.: Max-algebra modelling and analysis of time-table dependent networks. In: Proc. 1st European Control Conference, Grenoble 1991, pp. 1831–1836
[10] Butkovic P., Zimmermann K.:
A strongly polynomial algorithm for solving two-wided linear systems in max-algebra. Discrete Appl. Math. 154 (2006), 437–446
MR 2203194
[11] Cochet-Terrasson J., Gaubert, S., Gunawardena J.:
A constructive fixed point theorem for min-max functions. Dynamics Stability Systems 14 (1999), 4, 407–433
MR 1746112 |
Zbl 0958.47028
[12] Cohen G., Gaubert, S., Quadrat J.-P.:
Duality and separation theorems in idempotent semimodules. Linear Algebra Appl. 379 (2004), 395–422
MR 2039751 |
Zbl 1042.46004
[13] Costan A., Gaubert S., Goubault, E., Putot S.:
A policy iteration algorithm for computing fixed points in static analysis of programs. In: CAV’05, Edinburgh 2005 (Lecture Notes in Computer Science 3576), Springer–Verlag, Berlin, pp. 462–475
Zbl 1081.68616
[14] Cuninghame-Green R. A., Butkovic P.:
The equation $A \otimes x= B \otimes y$ over $(\max ,+)$. Theoret. Comp. Sci. 293 (2003), 3–12
MR 1957609 |
Zbl 1021.65022
[15] Vries R. de, Schutter, B. De, Moor B. De: On max-algebraic models for transportation networks. In: Proc. Internat. Workshop on Discrete Event Systems (WODES’98), Cagliari 1998, pp. 457–462
[16] Farkas J.: Über der einfachen Ungleichungen. J. Reine Angew. Math. 124 (1902), 1–27
[17] Gaubert S., Gunawardena J.:
The duality theorem for min-max functions. Comptes Rendus Acad. Sci. 326 (1999), Série I, 43–48
MR 1649473
[18] Gaubert S., Katz R.:
Rational semimodules over the max-plus semiring and geometric approach of discrete event systems. Kybernetika 40 (2004), 2, 153–180
MR 2069176
[19] Golan J. S.:
The theory of semirings with applications in mathematics and theoretical computer science. Longman Sci. & Tech. 54 (1992)
MR 1163371 |
Zbl 0780.16036
[20] Haar A.: Über Lineare Ungleichungen. 1918. Reprinted in: A. Haar, Gesammelte Arbeiten, Akademi Kiadó, Budapest 1959
[21] Hennet J. C.:
Une Extension du Lemme de Farkas et Son Application au Problème de Régulation Linéaire sous Contraintes. Comptes Rendus Acad. Sci. 308 (1989), Série I, pp. 415–419
MR 0992520
[22] Hiriart-Urruty J.-B., Lemarechal C.:
Fundamentals of Convex Analysis. Springer–Verlag, Berlin 2001
MR 1865628 |
Zbl 0998.49001
[23] Katz R. D.: Max-plus (A,B)-invariant and control of discrete event systems. To appear in IEEE TAC, 2005, arXiv:math.OC/0503448
[24] Klimann I.:
A solution to the problem of (A,B)-invariance for series. Theoret. Comput. Sci. 293 (2003), 1, 115–139
MR 1957615 |
Zbl 1025.68050
[25] Ledoux J., Truffet L.:
Comparison and aggregation of max-plus linear systems. Linear Algebra. Appl. 378 (2004), 1, 245–272
MR 2031795 |
Zbl 1052.15014
[26] Lhommeau M.: Etude de Systèmes à Evénements Discrets: 1. Synthèse de Correcteurs Robustes dans un Dioide d’Intervalles. 2. Synthèse de Correcteurs en Présence de Perturbations. PhD Thesis, Université d’Angers ISTIA 2003
[27] Lhommeau M., Hardouin, L., Cottenceau B.:
Optimal control for (Max,+)-linear systems in the presence of disturbances. In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin, pp. 47–54
MR 2019300 |
Zbl 1059.93090
[28] Muller A., Stoyan D.:
Comparison Methods for Stochastic Models and Risks. Wiley, New York 2002
MR 1889865
[29] Dam A. A. ten, Nieuwenhuis J. W.:
A linear programming algorithm for invariant polyhedral sets of discrete-time linear systems. Systems Control Lett. 25 (1995), 337–341
MR 1343218
[30] Truffet L.:
Monotone linear dynamical systems over dioids. In: Proc. Positive Systems: Theory and Applications (POSTA’03), Roma 2003 (Lecture Notes in Control and Information Sciences 294), Springer–Verlag, Berlin pp. 39–46
MR 2019299 |
Zbl 1059.93093
[31] Truffet L.:
Some ideas to compare Bellman chains. Kybernetika 39 (2003), 2, 155–163. (Special Issue on max-plus Algebra)
MR 1996554
[32] Truffet L.:
Exploring positively invariant sets by linear systems over idempotent semirings. IMA J. Math. Control Inform. 21 (2004), 307–322
MR 2076223 |
Zbl 1098.93025
[33] Truffet L.:
New bounds for timed event graphs inspired by stochastic majorization results. Discrete Event Dyn. Systems 14 (2004), 355–380
MR 2092597 |
Zbl 1073.93039
[34] Wagneur E.: Duality in the max-algebra. In: IFAC, Commande et Structures des Systèmes, Nantes 1998, pp. 707–711