Previous |  Up |  Next

Article

Keywords:
fuzzy relation; fuzzy relation properties; fuzzy relation classes; $\ast $-transitivity; transitivity; aggregation functions; relation aggregation; triangular norms
Summary:
Diverse classes of fuzzy relations such as reflexive, irreflexive, symmetric, asymmetric, antisymmetric, connected, and transitive fuzzy relations are studied. Moreover, intersections of basic relation classes such as tolerances, tournaments, equivalences, and orders are regarded and the problem of preservation of these properties by $n$-ary operations is considered. Namely, with the use of fuzzy relations $R_1,\ldots ,R_n$ and $n$-argument operation $F$ on the interval $[0,1]$, a new fuzzy relation $R_F=F(R_1,\ldots ,R_n)$ is created. Characterization theorems concerning the problem of preservation of fuzzy relations properties are given. Some conditions on aggregation functions are weakened in comparison to those previously given by other authors.
References:
[1] Bezdek J. C., Harris J. D.: Fuzzy partitions and relations: an axiomatic basis for clustering. Fuzzy Sets and Systems 1 (1978), 111–127 MR 0502319 | Zbl 0442.68093
[2] Bodenhofer U.: A Similarity–Based Generalization of Fuzzy Orderings. PhD Thesis. Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators (T. Calvo et al., ed.), Physica–Verlag, Heildelberg 2002, pp. 3–104 MR 1936384 | Zbl 1039.03015
[4] Baets B. De, Mesiar R.: T-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 MR 1645614 | Zbl 0930.03070
[5] Chiclana F., Herrera F., Herrera-Viedma, E., Martínez L.: A note on the reciprocity in the aggregation of fuzzy preference relations using OWA oprators. Fuzzy Sets and Systems 137 (2003), 71–83 MR 1992699
[6] Drewniak J.: Fuzzy Relation Calculus. Silesian University, Katowice 1989 MR 1009161 | Zbl 0701.04002
[7] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations. In: Current Issues in Data and Knowledge Engineering (B. De Baets et al., ed.), EXIT, Warszawa 2004, pp. 195–203
[8] Drewniak J., Dudziak U.: Aggregations preserving classes of fuzzy relations. Kybernetika 41 (2005), 3, 265–284 MR 2181418
[9] Drewniak J., Dudziak U.: Aggregations in classes of fuzzy relations. Ann. Acad. Paed. Cracoviensis 33, Studia Math. 5 (2006), 33–43 MR 2312576 | Zbl 1129.03029
[10] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Spport. Kluwer Academic Publishers, Dordrecht 1994
[11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[12] Marichal J. L.: On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom. Aequationes Math. 59 (2000), 74–83 MR 1741471 | Zbl 0945.39014
[13] Ovchinnikov S.: Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 107–126 MR 1103658 | Zbl 0725.04003
[14] Peneva V., Popchev I.: Aggregation of fuzzy relations. C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44 MR 1727541
[15] Peneva V., Popchev I.: Properties of the aggregation operators related with fuzzy relations. Fuzzy Sets and Systems 139 (2003), 3, 615–633 MR 2015157 | Zbl 1054.91021
[16] Peneva V., Popchev I.: Transformations by parameterized t-norms preserving the properties of fuzzy relations. C. R. Acad. Bulgare Sci. 57 (2004), 10, 9–18 MR 2104092 | Zbl 1059.03059
[17] Peneva V., Popchev I.: Aggregation of fuzzy preference relations with different importance. C. R. Acad. Bulgare Sci. 58 (2005), 5, 499–506 Zbl 1115.91002
[18] Peneva V., Popchev I.: Aggregation of fuzzy preference relations by composition. C. R. Acad. Bulgare Sci. 59 (2006), 4, 373–380 MR 2104092 | Zbl 1098.90040
[19] Roubens M., Vincke P.: Preference Modelling. Springer–Verlag, Berlin 1985 MR 0809182 | Zbl 0612.92020
[20] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertainty, Fuzziness, Knowledge–Based Systems 10 (2002), 11–35 MR 1962666 | Zbl 1053.03514
[21] Saminger S., Maes, K., Baets B. De: Aggregation of T-transitive reciprocal relations. In: Proc. of AGOP’05, Lugano 2005, pp. 113–118
[22] Zadeh L. A.: Similarity relations and fuzzy orderings. Inform. Sci. 3 (1971), 177–200 MR 0297650 | Zbl 0218.02058
Partner of
EuDML logo