[1] Bezdek J. C., Harris J. D.:
Fuzzy partitions and relations: an axiomatic basis for clustering. Fuzzy Sets and Systems 1 (1978), 111–127
MR 0502319 |
Zbl 0442.68093
[2] Bodenhofer U.:
A Similarity–Based Generalization of Fuzzy Orderings. PhD Thesis. Universitätsverlag Rudolf Trauner, Linz 1999
Zbl 1113.03333
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.:
Aggregation operators: properties, classes and construction methods. In: Aggregation Operators (T. Calvo et al., ed.), Physica–Verlag, Heildelberg 2002, pp. 3–104
MR 1936384 |
Zbl 1039.03015
[5] Chiclana F., Herrera F., Herrera-Viedma, E., Martínez L.:
A note on the reciprocity in the aggregation of fuzzy preference relations using OWA oprators. Fuzzy Sets and Systems 137 (2003), 71–83
MR 1992699
[7] Drewniak J., Dudziak U.: Safe transformations of fuzzy relations. In: Current Issues in Data and Knowledge Engineering (B. De Baets et al., ed.), EXIT, Warszawa 2004, pp. 195–203
[8] Drewniak J., Dudziak U.:
Aggregations preserving classes of fuzzy relations. Kybernetika 41 (2005), 3, 265–284
MR 2181418
[9] Drewniak J., Dudziak U.:
Aggregations in classes of fuzzy relations. Ann. Acad. Paed. Cracoviensis 33, Studia Math. 5 (2006), 33–43
MR 2312576 |
Zbl 1129.03029
[10] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Spport. Kluwer Academic Publishers, Dordrecht 1994
[11] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[12] Marichal J. L.:
On an axiomatization of the quasi-arithmetic mean values without the symmetry axiom. Aequationes Math. 59 (2000), 74–83
MR 1741471 |
Zbl 0945.39014
[13] Ovchinnikov S.:
Similarity relations, fuzzy partitions, and fuzzy orderings. Fuzzy Sets and Systems 40 (1991), 107–126
MR 1103658 |
Zbl 0725.04003
[14] Peneva V., Popchev I.:
Aggregation of fuzzy relations. C. R. Acad. Bulgare Sci. 51 (1998), 9–10, 41–44
MR 1727541
[15] Peneva V., Popchev I.:
Properties of the aggregation operators related with fuzzy relations. Fuzzy Sets and Systems 139 (2003), 3, 615–633
MR 2015157 |
Zbl 1054.91021
[16] Peneva V., Popchev I.:
Transformations by parameterized t-norms preserving the properties of fuzzy relations. C. R. Acad. Bulgare Sci. 57 (2004), 10, 9–18
MR 2104092 |
Zbl 1059.03059
[17] Peneva V., Popchev I.:
Aggregation of fuzzy preference relations with different importance. C. R. Acad. Bulgare Sci. 58 (2005), 5, 499–506
Zbl 1115.91002
[18] Peneva V., Popchev I.:
Aggregation of fuzzy preference relations by composition. C. R. Acad. Bulgare Sci. 59 (2006), 4, 373–380
MR 2104092 |
Zbl 1098.90040
[20] Saminger S., Mesiar, R., Bodenhofer U.:
Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertainty, Fuzziness, Knowledge–Based Systems 10 (2002), 11–35
MR 1962666 |
Zbl 1053.03514
[21] Saminger S., Maes, K., Baets B. De: Aggregation of T-transitive reciprocal relations. In: Proc. of AGOP’05, Lugano 2005, pp. 113–118