Previous |  Up |  Next

Article

Keywords:
copula; mass distribution; quasi-copula
Summary:
In this paper, we provide a new family of trivariate proper quasi-copulas. As an application, we show that $W^{3}$ – the best-possible lower bound for the set of trivariate quasi-copulas (and copulas) – is the limit member of this family, showing how the mass of $W^3$ is distributed on the plane $x+y+z=2$ of $[0,1]^3$ in an easy manner, and providing the generalization of this result to $n$ dimensions.
References:
[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89 DOI 10.1016/0167-7152(93)90001-Y | MR 1223530 | Zbl 0798.60023
[2] Beliakov G., Calvo, T., Lázaro J.: Pointwise construction of Lipschitz aggregation operators. In: Proc. Information and Management of Uncertainty in Knowledge-Based Systems (IPMU) 2006, pp. 595–601 Zbl 1120.68099
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3–105 MR 1936383 | Zbl 1039.03015
[4] Cuculescu, I., Theodorescu R.: Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742 MR 1929521
[5] Dall’Aglio G.: Fréchet classes and compatibility of distribution functions. Symp. Math. 9 (1972), 131–150 MR 0339311 | Zbl 0243.60007
[6] Baets, B. De, Meyer H. De: Orthogonal grid constructions of copulas. IEEE Trans. Fuzzy Systems (to appear)
[7] Baets B. De, Meyer, H. De, Úbeda-Flores M.: Mass distribution associated with a trivariate quasi-copula. Preprint, 2006 Zbl 1131.62044
[8] Durante F.: Generalized composition of binary aggregation operators. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Syst. 13 (2005), 567–577 DOI 10.1142/S0218488505003679 | MR 2198350 | Zbl 1137.62353
[9] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets Syst. 148 (2004), 263–278 MR 2100199 | Zbl 1057.81011
[10] Klement E. P., Kolesárová A.: 1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211 MR 2118098 | Zbl 1071.62048
[11] Klement E. P., Kolesárová A.: Extension to copulas and quasi-copulas as special 1–Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348 MR 2181422
[12] Kolesárová A.: 1–Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629 MR 2042344
[13] Nelsen R. B.: Copulas and quasi-copulas: An introduction to their properties and applications. In: Logical, algebraic, analytic, and probabilistic aspects of triangular norms (E. P. Klement, and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413 MR 2165243 | Zbl 1079.60021
[14] Nelsen R. B.: An Introduction to Copulas. Second Edition. Springer, New York 2006 MR 2197664 | Zbl 1152.62030
[15] Nelsen R. B., Úbeda-Flores M.: The lattice-theoretic structure of sets of bivariate copulas and quasi-copulas. CR Acad. Sci. Paris, Ser. I 341 (2005), 583–586 DOI 10.1016/j.crma.2005.09.026 | MR 2182439 | Zbl 1076.62053
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187–194 MR 2058991 | Zbl 1135.62338
[17] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal. 90 (2004), 348–358 DOI 10.1016/j.jmva.2003.09.002 | MR 2081783 | Zbl 1057.62038
[18] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.: On the construction of copulas and quasi-copulas with given diagonal sections. Insurance Math. Econom. (to appear) MR 2404309 | Zbl 1152.60311
[19] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.: Derivability of some operations on distribution functions. In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), IMS Lecture Notes-Monograph Series Number 28, Hayward 1996, pp. 233–243 MR 1485535
[20] Quesada-Molina J. J., Rodríguez-Lallena J. A.: Some advances in the study of the compatibility of three bivariate copulas. J. Ital. Statist. Soc. 3 (1994), 397–417 DOI 10.1007/BF02589026
[21] Rodríguez-Lallena J. A., Úbeda-Flores M.: Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33 (2004), 805–820 MR 2042768 | Zbl 1066.62056
[22] Rodríguez-Lallena J. A., Úbeda-Flores M.: Compatibility of three bivariate quasi-copulas: Applications to copulas. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 173–180 MR 2118094 | Zbl 1064.62060
[23] Sklar A.: Fonctions de répartition $\grave{\mathrm a}$ $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231 MR 0125600
[24] Sklar A.: Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460 MR 0345164 | Zbl 0292.60036
Partner of
EuDML logo