[2] Beliakov G., Calvo, T., Lázaro J.:
Pointwise construction of Lipschitz aggregation operators. In: Proc. Information and Management of Uncertainty in Knowledge-Based Systems (IPMU) 2006, pp. 595–601
Zbl 1120.68099
[3] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.:
Aggregation operators: properties, classes and construction methods. In: Aggregation Operators. New Trends and Applications (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica-Verlag, Heidelberg 2002, pp. 3–105
MR 1936383 |
Zbl 1039.03015
[4] Cuculescu, I., Theodorescu R.:
Copulas: diagonals and tracks. Rev. Roumaine Math. Pures Appl. 46 (2001), 731–742
MR 1929521
[5] Dall’Aglio G.:
Fréchet classes and compatibility of distribution functions. Symp. Math. 9 (1972), 131–150
MR 0339311 |
Zbl 0243.60007
[6] Baets, B. De, Meyer H. De: Orthogonal grid constructions of copulas. IEEE Trans. Fuzzy Systems (to appear)
[7] Baets B. De, Meyer, H. De, Úbeda-Flores M.:
Mass distribution associated with a trivariate quasi-copula. Preprint, 2006
Zbl 1131.62044
[9] Janssens S., Baets, B. De, Meyer H. De:
Bell-type inequalities for quasi-copulas. Fuzzy Sets Syst. 148 (2004), 263–278
MR 2100199 |
Zbl 1057.81011
[10] Klement E. P., Kolesárová A.:
1–Lipschitz aggregation operators, quasi-copulas and copulas with given diagonals. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211
MR 2118098 |
Zbl 1071.62048
[11] Klement E. P., Kolesárová A.:
Extension to copulas and quasi-copulas as special 1–Lipschitz aggregation operators. Kybernetika 41 (2005), 329–348
MR 2181422
[12] Kolesárová A.:
1–Lipschitz aggregation operators and quasi-copulas. Kybernetika 39 (2003), 615–629
MR 2042344
[13] Nelsen R. B.:
Copulas and quasi-copulas: An introduction to their properties and applications. In: Logical, algebraic, analytic, and probabilistic aspects of triangular norms (E. P. Klement, and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413
MR 2165243 |
Zbl 1079.60021
[16] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.:
Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodríguez-Lallena, eds.), Kluwer Academic Publishers, Dordrecht 2002, pp. 187–194
MR 2058991 |
Zbl 1135.62338
[18] Nelsen R. B., Quesada-Molina J. J., Rodríguez-Lallena J. A., Úbeda-Flores M.:
On the construction of copulas and quasi-copulas with given diagonal sections. Insurance Math. Econom. (to appear)
MR 2404309 |
Zbl 1152.60311
[19] Nelsen R. B., Quesada-Molina J. J., Schweizer, B., Sempi C.:
Derivability of some operations on distribution functions. In: Distributions with Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M. D. Taylor, eds.), IMS Lecture Notes-Monograph Series Number 28, Hayward 1996, pp. 233–243
MR 1485535
[20] Quesada-Molina J. J., Rodríguez-Lallena J. A.:
Some advances in the study of the compatibility of three bivariate copulas. J. Ital. Statist. Soc. 3 (1994), 397–417
DOI 10.1007/BF02589026
[21] Rodríguez-Lallena J. A., Úbeda-Flores M.:
Best-possible bounds on sets of multivariate distribution functions. Comm. Statist. Theory Methods 33 (2004), 805–820
MR 2042768 |
Zbl 1066.62056
[22] Rodríguez-Lallena J. A., Úbeda-Flores M.:
Compatibility of three bivariate quasi-copulas: Applications to copulas. In: Soft Methodology and Random Information Systems (M. López-Díaz, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry, eds.), Advances in Soft Computing, Berlin 2004, pp. 173–180
MR 2118094 |
Zbl 1064.62060
[23] Sklar A.:
Fonctions de répartition $\grave{\mathrm a}$ $n$ dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris 8 (1959), 229–231
MR 0125600
[24] Sklar A.:
Random variables, joint distribution functions, and copulas. Kybernetika 9 (1973), 449–460
MR 0345164 |
Zbl 0292.60036