[2] Atkeson C. G., Moore A. W., Schaal S.:
Locally weighted learning. Artificial Intelligence Rev. 11 (1997), 11–73
DOI 10.1023/A:1006559212014
[3] Baronas R., Christensen J., Ivanauskas, F., Kulys J.:
Computer simulation of amperometric biosensor response to mixtures of compounds. Nonlinear Anal. Model. Control 7 (2002), 3–14
Zbl 1062.93500
[4] Baronas R., Ivanauskas, F., Kulys J.:
The influence of the enzyme membrane thickness on the response of amperometric biosensors. Sensors 3 (2003), 248–262
DOI 10.3390/s30700248
[6] Chan L. W., Szeto C. C.: Training recurrent network with block-diagonal approximated Levenberg–Marquardt algorithm. In: Proc. IEEE Internat. Joint Conference on Neural Networks, IJCNN ’99, pp. 1521–1526, 1999
[7] Devroye L., Gyorfi, L., Lugosi G.:
A Probabilistic Theory of Pattern Recognition. Springer–Verlag, New York 1996
MR 1383093
[8] Haykin S.:
Neural Networks: A Comprehensive Foundation. Second edition. Prentice Hall, New York 1999
Zbl 0934.68076
[9] INTELLISENS: Intelligent Signal Processing of Biosensor Arrays Using Pattern Recognition for Characterisation of Wastewater: Aiming Towards Alarm Systems. EC RTD project. 2000 – 2003
[10] Malkavaara P., Alén, R., Kolehmainen E.:
Chemometrics: an important tool for the modern chemist, an example from wood-processing chemistry. J. Chem. Inf. Comput. Sci. 40 (2000), 438–441
DOI 10.1021/ci990444i
[12] Moore A. W., Schneider J. G., Deng K.: Efficient Locally Weighted Polynomial Regression Predictions. In: Proc. Fourteenth International Conference on Machine Learning, pp. 236–244, 1997
[13] Nakamoto T., Hiramatsu H.:
Study of odor recorder for dynamical change of odor using QCM sensors and neural network. Sens. Actuators B 85 (2002), 98–105
DOI 10.1016/S0925-4005(02)00130-2
[14] Patterson D.:
Artificial Neural Networks, Theory and Applications. Prentice Hall, Upper Saddle River 1996
Zbl 0839.68079
[15] Rao C. R.:
Linear Statistical Inference and its Application. Wiley, New York 1973
MR 0346957
[18] Ruzicka J., Hansen E. H.: Flow Injection Analysis. Wiley, New York 1988
[19] Samarskii A. A.:
The Theory of Difference Schemes. Marcel Dekker, New York – Basel 2001
MR 1818323 |
Zbl 0971.65076
[20] Schaal S., Atkeson C. G.: Assessing the quality of learned local models, In: Advances in Neural Information Processing Systems 6 (J. Cowan, G. Tesauro, J. Alspector, eds.), Morgan Kaufmann 1994, pp. 160–167
[21] Schaal S., Atkeson C. G.:
Constructive incremental learning from only local information. Neural Comput. 10 (1998), 2047–2084
DOI 10.1162/089976698300016963
[22] Scheller F., Schubert F.: Biosensors, Vol. 7. Elsevier, Amsterdam 1992
[23] Schulmeister T.: Mathematical modelling of the dynamics of amperometric enzyme electrodes. Selective Electrode Rev. 12 (1990), 260–303
[24] Turner A. P. F., Karube, I., Wilson G. S.: Biosensors: Fundamentals and Applications. Oxford University Press, Oxford 1987
[25] Wang Z., Isaksson, T., Kowalski B. R.:
New approach for distance measurement in locally weighted regression. Anal. Chem. 66 (1994), 249–260
DOI 10.1021/ac00074a012
[26] Wollenberger U., Lisdat, F., Scheller F. W.: Frontiers in Biosensorics 2: Practical Applications. Birkhauser Verlag, Basel 1997
[27] Ziegler C., Göpel W., Hämmerle H., Hatt H., Jung G., Laxhuber L., Schmidt H.-L., Schütz S., Vögtle, F., Zell A.: Bioelectronic noses: A status report. Part II. Biosens. Bioelectron. 13 (1998), 539–571