Previous |  Up |  Next

Article

Keywords:
univariate regression model; multivariate regression model; constraints; outlier; variance components
Summary:
Outliers in univariate and multivariate regression models with constraints are under consideration. The covariance matrix is assumed either to be known or to be known only partially.
References:
[1] Anderson T. W.: Introduction to Multivariate Statistical Analysis. Wiley, New York 1958 MR 0091588 | Zbl 1039.62044
[2] Barnett V., Lewis T.: Outliers in Statistical Data. Wiley, New York 1994 MR 1272911 | Zbl 0801.62001
[3] Gnanadesikan R.: Methods for Statistical Data Analysis of Multivariate Observations. Wiley, New York – Chichester – Weinheim – Brisbane – Singapore – Toronto 1997 MR 1428423 | Zbl 0403.62034
[4] Humak K. M. S.: Statistische Methoden der Modellbildung, Band I. Akademie Verlag, Berlin 1977 MR 0464503 | Zbl 0353.62001
[5] Kubáček L., Kubáčková, L., Volaufová J.: Statistical Models with Linear Structures. Veda, Bratislava 1995
[6] Kubáček L., Kubáčková L.: Nonsensitiveness regions in universal models. Math. Slovaca 50 (2000), 219–240 MR 1763121 | Zbl 0984.62040
[7] Lešanská E.: Insensitivity regions in mixed models (in Czech). Ph.D. Thesis. Faculty of Science, Palacký University, Olomouc 2001
[8] Lešanská E.: Insensitivity regions for testing hypotheses in mixed models with constraints. Tatra Mt. Math. Publ. 22 (2001), 209–222 MR 1889046 | Zbl 1001.62011
[9] Lešanská E.: Optimization of the size of nonsensitivity regions. Appl. Math. 47 (2002), 9–23 DOI 10.1023/A:1021750700055 | MR 1876489
[10] Rao C. R., Mitra S. K.: Generalized Inverse of Matrices and Its Applications. Wiley, New York 1971 MR 0338013 | Zbl 0261.62051
[11] Rao C. R., Kleffe J.: Estimation of Variance Components and Applications. North–Holland, Amsterdam 1988 MR 0933559 | Zbl 0645.62073
[12] Scheffé H.: The Analysis of Variance. Wiley, New York 1959 MR 0116429 | Zbl 0998.62500
[13] Zvára K.: Regression Analysis (in Czech). Academia, Praha 1989
Partner of
EuDML logo