Previous |  Up |  Next

Article

Keywords:
decision making under uncertainty; complete lattice; lattice- valued possibilistic measures; possibilistic decision function; minimax and Bayesian optimization
Summary:
The notion and theory of statistical decision functions are re-considered and modified to the case when the uncertainties in question are quantified and processed using lattice-valued possibilistic measures, so emphasizing rather the qualitative than the quantitative properties of the resulting possibilistic decision functions. Possibilistic variants of both the minimax (the worst-case) and the Bayesian optimization principles are introduced and analyzed.
References:
[1] Birkhoff G.: Lattice Theory. Third edition. Amer. Math. Society, Providence, RI 1967 MR 0227053 | Zbl 0537.06001
[2] Blackwell D., Girshick N. A.: Theory of Games and Statistical Decisions. Wiley, New York, 1954 MR 0070134 | Zbl 0439.62008
[3] Cooman G. De: Possibility theory I, II, III. Internat. J. Gen. Systems 25 (1997), 4, 291–323, 325–351, 353–371
[4] Dubois D., Prade H.: Théorie des Possibilités – Applications à la Représentation des Connaissances en Informatique. Mason, Paris 1985 Zbl 0674.68059
[5] Dubois D., Nguyen, H., Prade H.: Possibility theory, probability theory and fuzzy sets: misunderstandings, bridges and gaps. In: The Handbook of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Kluwer Academic Publishers, Boston, 2000, pp. 343–438
[6] Faure R., Heurgon E.: Structures Ordonnées et Algèbres de Boole. Gauthier-Villars, Paris 1971 MR 0277440 | Zbl 0219.06001
[7] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Boston 1998 MR 1900263 | Zbl 1007.03022
[8] Halmos P. R.: Measure Theory. D. van Nostrand, New York – Toronto – London 1950 MR 0033869 | Zbl 0283.28001
[9] Kramosil I.: Extensions of partial lattice-valued possibility measures. Neural Network World 13 (2003), 4, 361–384
[10] Loève M.: Probability Theory. D. van Nostrand, New York – Toronto – London 1960 MR 0123342 | Zbl 0385.60001
[11] Sikorski R.: Boolean Algebras. Second edition. Springer-Verlag, Berlin – Göttingen – Heidelberg – New York 1964 MR 0242724 | Zbl 0191.31505
[12] Wald A.: Statistical Decision Functions. Wiley, New York 1950 MR 0036976 | Zbl 0229.62001
Partner of
EuDML logo