[3] Biazzo V., Gilio A., Lukasiewicz, T., Sanfilippo G.:
Probabilistic logic under coherence, model-theoretic probabilistic logic, and default reasoning in System P. J. Appl. Non-Classical Logics 12 (2002), 2, 189–213
DOI 10.3166/jancl.12.189-213 |
MR 1949978 |
Zbl 1038.03023
[5] Calabrese P. G., Goodman I. R.: Conditional event algebras and conditional probability logics. In: Proc. Internat. Workshop Probabilistic Methods in Expert Systems (R. Scozzafava, ed.), Societa Italiana di Statistica, Rome 1993, pp. 1–35
[6] Calabrese P. G.: Conditional events: Doing for logic and probability what fractions do for integer arithmetic. In: Proc.“The Notion of Event in Probabilistic Epistemology”, Dipartimento di Matematica Applicata “Bruno de Finetti”, Triest 1996, pp. 175–212
[7] Coletti G.:
Coherent numerical and ordinal probabilistic assessment. IEEE Trans. Systems Man Cybernet. 24 (1994), 1747–1754
DOI 10.1109/21.328932 |
MR 1302033
[8] Coletti G., Scozzafava, R., Vantaggi B.:
Probabilistic reasoning as a general unifying tool. In: ECSQARU 2001 (S. Benferhat and P. Besnard, eds., Lecture Notes in Artificial Intelligence 2143), Springer–Verlag, Berlin 2001, pp. 120–131
Zbl 1005.68549
[9] Coletti G., Scozzafava R.:
Probabilistic Logic in a Coherent Setting. Kluwer, Dordrecht 2002
MR 2042026 |
Zbl 1040.03017
[10] Finetti B. de: Theory of Probability (Vol. 1 and 2). Wiley, Chichester 1974
[13] Gilio A.: Probabilistic consistency of conditional probability bounds. In: Advances in Intelligent Computing (B. Bouchon-Meunier, R. R. Yager and L. A. Zadeh, eds., Lecture Notes in Computer Science 945), Springer–Verlag, Berlin 1995
[15] Hailperin T.:
Sentential Probability Logic. Origins, Development, Current Status, and Technical Applications. Lehigh University Press, Bethlehem 1996
MR 1437603 |
Zbl 0922.03026
[20] Pfeifer N., Kleiter G. D.: Towards a probability logic based on statistical reasoning. In: Proc. 11th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Vol. 3, Editions E. D. K., Paris 2006, pp. 2308–2315
[21] Sobel J. H.:
Modus Ponens and Modus Tollens for Conditional Probabilities,, Updating on Uncertain Evidence. Technical Report, University of Toronto 2005.
http://www.scar.utoronto.ca/~sobel/