Previous |  Up |  Next

Article

Keywords:
fuzzy measure; t-norm; T-conorm; subadditivity; belief
Summary:
$S$-measures are special fuzzy measures decomposable with respect to some fixed t-conorm $S$. We investigate the relationship of $S$-measures with some distinguished properties of fuzzy measures, such as subadditivity, submodularity, belief, etc. We show, for example, that each $S_P$-measure is a plausibility measure, and that each $S$-measure is submodular whenever $S$ is 1-Lipschitz.
References:
[1] Bronevich A. G.: On the closure of families of fuzzy measures under eventwise aggregations. Fuzzy Sets and Systems 153 (2005), 1, 45–70 MR 2202123 | Zbl 1068.28012
[2] Chateauneuf A.: Decomposable capacities, distorted probabilities and concave capacities. Math. Soc. Sci. 31 (1996), 19–37 DOI 10.1016/0165-4896(95)00794-6 | MR 1379275 | Zbl 0921.90001
[3] Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980 MR 0589341 | Zbl 0444.94049
[4] Klement E. P., Mesiar R., Pap E.: Triangular Norms. Kluwer Academic Publishers, Dortrecht 2000 MR 1790096 | Zbl 1087.20041
[5] Klement E. P., Mesiar R., Pap E.: Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 8 (2000), 701–717 DOI 10.1142/S0218488500000514 | MR 1803475 | Zbl 0991.28014
[6] Klir G. J., Folger T. A.: Fuzzy Sets, Uncertainty and Information. Prentice Hall, Englewood Cliffs, New Jersey 1988 MR 0930102 | Zbl 0675.94025
[7] Mesiar R.: Generalizations of $k$-order additive discrete fuzzy measures. Fuzzy Sets and Systems 102 (1999), 423–428 DOI 10.1016/S0165-0114(98)00216-4 | MR 1676909 | Zbl 0936.28014
[8] Mesiar R.: Triangular norms – an overview. In: Computational Inteligence in Theory and Practice (B. Reusch, K.-H. Temme, eds.), Physica–Verlag, Heidelberg 2001, pp. 35–54 MR 1858675 | Zbl 1002.68164
[9] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.), Springer, New York 1999 DOI 10.1007/978-1-4757-3076-0 | MR 1653203 | Zbl 1152.62030
[10] Pap E.: Null-additive Set Functions. Kluwer Academic Publishers, Dordrecht 1995 MR 1368630 | Zbl 1003.28012
[11] Pap E.: Pseudo-additive measures and their applications. In: Handbook of Measure Theory, Volume II (E. Pap, ed.), Elsevier, North–Holland, Amsterdam 2002, pp. 1403–1465 MR 1954645 | Zbl 1018.28010
[12] Smutná D.: On a peculiar t-norm. Busefal 75 (1998), 60–67
[13] Sugeno M.: Theory of Fuzzy Integrals and Applications. Ph.D. Thesis, Tokyo Institute of Technology, Tokyo 1974
[14] Valášková Ĺ., Struk P.: Preservation of Distinguished Fuzzy Measure Classes by Distortion. In: MDAI 2004, Barcelona (V. Torra, Y. Narukawa, eds., Lecture Notes in Artificial Intelligence 3131), Springer–Verlag, Berlin 2004, pp. 175–182 Zbl 1109.28303
[15] Wang Z., Klir G. J.: Fuzzy Measures Theory. Plenum Press, New York 1992
[16] Weber S.: $\perp $-decomposable measures and integrals for Archimedean t-conorms. J. Math. Anal. Appl. 101 (1984), 114–138 DOI 10.1016/0022-247X(84)90061-1 | MR 0746230 | Zbl 0614.28019
[17] Zadeh L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1 (1978), 3–28 DOI 10.1016/0165-0114(78)90029-5 | MR 0480045
Partner of
EuDML logo