Previous |  Up |  Next

Article

Keywords:
conjunctor; copula; dominance; ordinal sum; quasi-copula; t-norm
Summary:
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.
References:
[1] Aczél J.: Lectures on Functional Equations and their Applications. Academic Press, New York 1966 MR 0208210
[2] Birkhoff G.: Lattice Theory. American Mathematical Society, Providence, Rhode Island 1973 Zbl 0537.06001
[3] Bodenhofer U.: Representations and constructions of similarity-based fuzzy orderings. Fuzzy Sets and Systems 137 (2003), 1, 113–136 DOI 10.1016/S0165-0114(02)00436-0 | MR 1992702 | Zbl 1052.91032
[4] Bodenhofer U.: A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999 Zbl 1113.03333
[5] Clifford A. H.: Naturally totally ordered commutative semigroups. Amer. J. Math. 76 (1954), 631–646 DOI 10.2307/2372706 | MR 0062118
[6] Baets B. De, Janssens, S., Meyer H. De: Meta-theorems on inequalities for scalar fuzzy set cardinalities. Fuzzy Sets and Systems 157 (2006), 1463–1476 MR 2234554 | Zbl 1106.03046
[7] Baets B. De, Mesiar R.: $T$-partitions. Fuzzy Sets and Systems 97 (1998), 211–223 DOI 10.1016/S0165-0114(96)00331-4 | MR 1645614 | Zbl 0930.03070
[8] Baets B. De, Mesiar R.: Ordinal sums of aggregation operators. In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148 Zbl 1015.68194
[9] Díaz S., Montes, S., Baets B. De: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems, to appear
[10] Dubois D., Prade H.: New results about properties and semantics of fuzzy set-theoretic operators. In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75 MR 0587634 | Zbl 0593.04004
[11] Durante F., Sempi C.: Semicopulæ. Kybernetika 41 (2005), 3, 315–328 MR 2181421
[12] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 DOI 10.1006/jmva.1998.1809 | MR 1703371 | Zbl 0935.62059
[13] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for quasi-copulas. Fuzzy Sets and Systems 148 (2004), 263–278 MR 2100199 | Zbl 1057.81011
[14] Jenei S.: A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets and Systems 126 (2002), 199–205 MR 1884686 | Zbl 0996.03508
[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. (Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000 MR 1790096 | Zbl 1087.20041
[16] Klement E. P., Mesiar, R., Pap E.: Triangular norms as ordinal sums of semigroups in the sense of A. H. Clifford. Semigroup Forum 65 (2002), 71–82 DOI 10.1007/s002330010127 | MR 1903555 | Zbl 1007.20054
[17] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 MR 0190575
[18] Mayor G., Torrens J.: On a family of t-norms. Fuzzy Sets and Systems 41 (1991), 161–166 DOI 10.1016/0165-0114(91)90219-G | MR 1111963 | Zbl 0739.39006
[19] Mesiar R., Saminger S.: Domination of ordered weighted averaging operators over t-norms. Soft Computing 8 (2004), 562–570 DOI 10.1007/s00500-003-0315-x | Zbl 1066.68127
[20] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 DOI 10.1007/978-1-4757-3076-0 | MR 1653203 | Zbl 1152.62030
[21] Saminger S.: On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1406–1416 MR 2226983 | Zbl 1099.06004
[22] Saminger S.: Aggregation in Evaluation of Computer-Assisted Assessment. (Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005 Zbl 1067.68143
[23] Saminger S., Mesiar, R., Bodenhofer U.: Domination of aggregation operators and preservation of transitivity. Internat. J. Uncertain. Fuzziness Knowledge-Based Systems 10 (2002), 11–35 DOI 10.1142/S0218488502001806 | MR 1962666 | Zbl 1053.03514
[24] Schweizer B., Sklar A.: Probabilistic Metric Spaces. North–Holland, New York 1983 MR 0790314 | Zbl 0546.60010
[25] Tardiff R. M.: Topologies for probabilistic metric spaces. Pacific J. Math. 65 (1976), 233–251 DOI 10.2140/pjm.1976.65.233 | MR 0423315 | Zbl 0337.54004
Partner of
EuDML logo