[1] Aczél J.:
Lectures on Functional Equations and their Applications. Academic Press, New York 1966
MR 0208210
[2] Birkhoff G.:
Lattice Theory. American Mathematical Society, Providence, Rhode Island 1973
Zbl 0537.06001
[4] Bodenhofer U.:
A Similarity-Based Generalization of Fuzzy Orderings. (Schriftenreihe der Johannes-Kepler-Universität Linz C 26.) Universitätsverlag Rudolf Trauner, Linz 1999
Zbl 1113.03333
[6] Baets B. De, Janssens, S., Meyer H. De:
Meta-theorems on inequalities for scalar fuzzy set cardinalities. Fuzzy Sets and Systems 157 (2006), 1463–1476
MR 2234554 |
Zbl 1106.03046
[8] Baets B. De, Mesiar R.:
Ordinal sums of aggregation operators. In: Technologies for Constructing Intelligent Systems (B. Bouchon-Meunier, J. Gutiérrez-Ríos, L. Magdalena, and R. R. Yager, eds.), Vol. 2: Tools, Physica–Verlag, Heidelberg 2002, pp. 137–148
Zbl 1015.68194
[9] Díaz S., Montes, S., Baets B. De: Transitivity bounds in additive fuzzy preference structures. IEEE Trans. Fuzzy Systems, to appear
[10] Dubois D., Prade H.:
New results about properties and semantics of fuzzy set-theoretic operators. In: Fuzzy Sets: Theory and Applications to Policy Analysis and Information Systems (P. P. Wang and S. K. Chang, eds.), Plenum Press, New York 1980, pp. 59–75
MR 0587634 |
Zbl 0593.04004
[11] Durante F., Sempi C.:
Semicopulæ. Kybernetika 41 (2005), 3, 315–328
MR 2181421
[13] Janssens S., Baets, B. De, Meyer H. De:
Bell-type inequalities for quasi-copulas. Fuzzy Sets and Systems 148 (2004), 263–278
MR 2100199 |
Zbl 1057.81011
[14] Jenei S.:
A note on the ordinal sum theorem and its consequence for the construction of triangular norms. Fuzzy Sets and Systems 126 (2002), 199–205
MR 1884686 |
Zbl 0996.03508
[15] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. (Trends in Logic. Studia Logica Library 8.) Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[17] Ling C. M.:
Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212
MR 0190575
[21] Saminger S.:
On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems 157 (2006), 1406–1416
MR 2226983 |
Zbl 1099.06004
[22] Saminger S.:
Aggregation in Evaluation of Computer-Assisted Assessment. (Schriftenreihe der Johannes-Kepler-Universität Linz C 44.) Universitätsverlag Rudolf Trauner, Linz 2005
Zbl 1067.68143