[1] Birkhoff G.:
Lattice Theory. Third edition. (AMS Colloquium Publications, Vol. 25.) American Mathematical Society, Providence, Rhode Island 1967
MR 0227053 |
Zbl 0537.06001
[2] Baets B. De:
Coimplicators, the forgotten connectives. Tatra Mt. Math. Publ. 12 (1997), 229–240
MR 1607142 |
Zbl 0954.03029
[5] Baets B. De, Fodor J.:
van Melle’s combining function in MYCIN is a representable uninorm: An alternative proof. Fuzzy Sets and Systems 104 (1999), 133–136
MR 1685816 |
Zbl 0928.03060
[6] Baets B. De, Mesiar R.:
Metrics and T-equalities. J. Math. Anal. Appl. 267 (2002), 331–347
MR 1888022
[8] Fodor J., Roubens M.:
Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994
Zbl 0827.90002
[10] Golan J.:
The Theory of Semirings with Applications in Mathematics and Theoretical Computer Science. Addison–Wesley Longman Ltd., Essex 1992
MR 1163371 |
Zbl 0780.16036
[11] Jenei S.:
Geometry of left-continuous t-norms with strong induced negations. Belg. J. Oper. Res. Statist. Comput. Sci. 38 (1998), 5–16
MR 1774255
[14] Jenei S.:
Structure of left-continuous triangular norms with strong induced negations. (III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208
MR 1908426 |
Zbl 1050.03505
[15] Jenei S.:
How to construct left-continuous triangular norms – state of the art. Fuzzy Sets and Systems 143 (2004), 27–45
MR 2060271 |
Zbl 1040.03021
[17] Klement E. P., Mesiar, R., Pap E.:
Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 3–13
MR 1685803 |
Zbl 0953.26008
[18] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. (Trends in Logic, Vol. 8.) Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[20] Maes K. C., Baets B. De:
Orthosymmetrical monotone functions. B. Belg. Math. Soc.-Sim., to appear
MR 2327329 |
Zbl 1142.26007
[21] Ruiz D., Torrens J.:
Residual implications and co-implications from idempotent uninorms. Kybernetika 40 (2004), 21–38
MR 2068596