[4] Chatterjee S., Hadi A. S.:
Sensitivity Analysis in Linear Regression. Wiley, New York 1988
MR 0939610 |
Zbl 0648.62066
[5] Csőrgő M., Révész P.:
Strong Approximation in Probability and Statistics. Akademia Kiadó, Budapest 1981
MR 0666546
[7] Jurečková J., Sen P. K.:
Regression rank scores scale statistics and studentization in linear models. In: Proc. Fifth Prague Symposium on Asymptotic Statistics, Physica Verlag, Heidelberg 1993, pp. 111–121
MR 1311932
[8] Hampel F. R., Ronchetti E. M., Rousseeuw P. J., Stahel W. A.:
Robust Statistics – The Approach Based on Influence Functions. Wiley, New York 1986
MR 0829458 |
Zbl 0733.62038
[9] Hettmansperger T. P., Sheather S. J.:
A cautionary note on the method of least median squares. Amer. Statist. 46 (1992), 79–83
MR 1165565
[11] Portnoy S.:
Tightness of the sequence of empiric c. d.f. processes defined from regression fractiles. In: Robust and Nonlinear Time-Series Analysis (J. Franke, W. Härdle, and D. Martin, eds.), Springer–Verlag, New York 1983, pp. 231–246
MR 0786311
[12] Prigogine I., Stengers I.: La Nouvelle Alliance. SCIENTIA 1977, Issues 5–12
[13] Prigogine I., Stengers I.:
Out of Chaos. William Heinemann Ltd, London 1984
MR 0102205
[15] Rousseeuw P. J., Leroy A. M.:
Robust Regression and Outlier Detection. Wiley, New York 1987
MR 0914792 |
Zbl 0711.62030
[16] Rubio A. M., Víšek J. Á.:
A note on asymptotic linearity of $M$-statistics in nonlinear models. Kybernetika 32 (1996), 353–374
MR 1420128 |
Zbl 0882.62053
[17] Rubio A. M., Víšek J. Á.:
Estimating the contamination level of data in the framework of linear regression analysis. Qüestiió 21 (1997), 9–36
MR 1476149 |
Zbl 1167.62388
[18] Štěpán J.: Teorie pravděpodobnosti (Probability Theory). Academia, Prague 1987
[19] Huffel S. Van:
Total least squares and error-in-variables modelling: Bridging the gap between statistics, computational mathematics and enginnering. In: Proc. Computational Statistics, COMPSTAT 2004 (J. Antoch, ed.), Physica–Verlag, Springer 2004, pp. 539–555
MR 2173049
[22] Víšek J. Á.: Ekonometrie I (Econometrics I). Carolinum, Publishing House of Charles University, Prague 1997
[23] Víšek J. Á.: Robust specification test. In: Proc. Prague Stochastics’98 (M. Hušková, P. Lachout, and J. Á. Víšek, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 581–586
[24] Víšek J. Á.: Robust instruments. In: Robust’98 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 1998, pp. 195–224
[25] Víšek J. Á.: Robust estimation of regression model. Bull. Czech Econometric Society 9 (1999), 57–79
[26] Víšek J. Á.: The least trimmed squares – random carriers. Bull. Czech Econometric Society 10 (1999), 1–30
[27] Víšek J. Á.: The robust regression and the experiences from its application on estimation of parameters in a dual economy. In: Proc. Macromodels’99, Rydzyna 1999, pp. 424–445
[29] Víšek J. Á.: Regression with high breakdown point. In: Robust 2000 (J. Antoch and G. Dohnal, eds.), Union of Czechoslovak Mathematicians and Physicists, Prague 2001, pp. 324–356
[30] Víšek J. Á.: A new paradigm of point estimation. In: Proc. Data Analysis 2000/II, Modern Statistical Methods – Modelling, Regression, Classification and Data Mining (K. Kupka, ed.), TRYLOBITE, Pardubice 2000, 195–230
[32] Víšek J. Á.: $\sqrt{n}$-consistency of empirical distribution function of residuals in linear regression model. Probab. Lett., submitted
[33] Zvára K.: Regresní analýza (Regression Analysis). Academia, Prague 1989