Previous |  Up |  Next

Article

Keywords:
counting process; compound process; Cox regression model; financial series; intensity; prediction
Summary:
A stochastic process cumulating random increments at random moments is studied. We model it as a two-dimensional random point process and study advantages of such an approach. First, a rather general model allowing for the dependence of both components mutually as well as on covariates is formulated, then the case where the increments depend on time is analyzed with the aid of the multiplicative hazard regression model. Special attention is devoted to the problem of prediction of process behaviour. To this end, certain results on risk processes and crossing probabilities are recalled and utilized. The application deals with the process of financial transactions and the problem of detection of outlied trajectories.
References:
[1] Andersen P. K., Borgan O., Gill R. D., Keiding M.: Statistical Models Based on Counting Processes. Springer, New York 1993 MR 1198884 | Zbl 0824.60003
[2] Arjas E.: A graphical method for assessing goodness of fit in Cox’s proportional hazards model. J. Amer. Statist. Assoc. 83 (1988), 204–212 DOI 10.1080/01621459.1988.10478588
[3] Asmussen S.: Ruin Probabilities. World Scientific, Singapore 2000 MR 1794582 | Zbl 1229.91151
[4] Brémaud P.: Point Processes and Queues: Martingale Dynamics. Springer, Berlin 1981 MR 0636252 | Zbl 0478.60004
[5] Embrechts P., Klüppelberg, K., Mikosch T.: Modeling Extremal Events. Springer, Berlin 1997 MR 1458613
[6] Hastie T. J., Tibshirani R. J.: Generalized Additive Models. Wiley, New York 1990 MR 1082147 | Zbl 0747.62061
[7] Jacod J., Shirjajev A. N.: Limit Theorems for Stochastic Processes. Springer, Berlin 2003 MR 1943877
[8] Kooperberg C., Stone C. J., Truong Y. K.: The $L_2$ rate of convergence for hazard regression. Scand. J. Statist. 22 (1995), 143–157 MR 1339748
[9] Marzec L., Marzec P.: Generalized martingale-residual processes for goodness-of-fit inference in Cox’s type regression model. Ann. Statist. 25 (1997), 683–714 DOI 10.1214/aos/1031833669 | MR 1439319
[10] McKeague I. W., Utikal K. J.: Inference for a nonlinear counting regression model. Ann. Statist. 18 (1990), 1172–1187 DOI 10.1214/aos/1176347745 | MR 1062704
[11] McKeague I. W., Utikal K. J.: Goodness-of-fit tests for additive hazard and proportional hazard models. Scand. J. Statist. 18 (1991), 177–195 MR 1146176
[12] Rolski T., Schmidli H., Schmidt, V., Teugels J.: Stochastic Processes for Insurance and Finance. Wiley, New York 1999 MR 1680267 | Zbl 1152.60006
[13] Stone C. J.: The use of polynomial splines and their tensor products in multivariate function estimation. With discussion. Ann. Statist. 22 (1994), 118–184 DOI 10.1214/aos/1176325361 | MR 1272079 | Zbl 0827.62038
[14] Volf P.: A nonparametric analysis of proportional hazard regression model. Problems Control Inform. Theory 18 (1989), 311–322 MR 1025942 | Zbl 0698.62039
[15] Volf P.: Analysis of generalized residuals in hazard regression models. Kybernetika 32 (1993), 501–510 MR 1420139
[16] Volf P.: On cumulative process model and its statistical analysis. Kybernetika 36 (2000), 165–176 MR 1760023
Partner of
EuDML logo