Previous |  Up |  Next

Article

Keywords:
Pearson goodness-of-fit test; Pearson-type goodness-of-fit tests; asymptotic local test power; asymptotic equivalence of tests; optimal number of classes
Summary:
An asymptotic local power of Pearson chi-squared tests is considered, based on convex mixtures of the null densities with fixed alternative densities when the mixtures tend to the null densities for sample sizes $n\rightarrow \infty .$ This local power is used to compare the tests with fixed partitions $\mathcal{P}$ of the observation space of small partition sizes $|\mathcal{P}|$ with the tests whose partitions $\mathcal{P}=\mathcal{P}_{n}$ depend on $n$ and the partition sizes $|\mathcal{P}_{n}|$ tend to infinity for $n\rightarrow \infty $. New conditions are presented under which it is asymptotically optimal to let $|\mathcal{P}|$ tend to infinity with $n$ or to keep it fixed, respectively. Similar conditions are presented under which the tests with fixed $|\mathcal{P}|$ and those with increasing $|\mathcal{P}_{n}|$ are asymptotically equivalent.
References:
[1] Berlinet A., Vajda I.: On asymptotic sufficiency and optimality of quantizations. J. Statist. Plann. Inference 135 (2005), to appear MR 2323412 | Zbl 1098.62004
[2] Drost F. C., Kallenberg W. C. M., Moore D. S., Oosterhoff J.: Power approximations to multinomial tests of fit. J. Amer. Statist. Assoc. 89 (1989), 130–141 DOI 10.1080/01621459.1989.10478748 | MR 0999671 | Zbl 0683.62027
[3] Feller W.: An Introduction to Probability and its Applications, Vol. 2. Second edition. Wiley, New York 1966
[4] Ferguson T. S.: Course in Large Sample Theory. Chapman & Hall, London 1996 MR 1699953 | Zbl 0871.62002
[5] Greenwood P. E., Nikulin M. S.: A Guide to Chi-Squared Testing. Wiley, New York 1996 MR 1379800 | Zbl 0853.62037
[6] Halmos P.: Measure Theory. Academic Press, New York 1964 Zbl 0283.28001
[7] Inglot T., Janic–Wróblewska A.: Data-driven chi-square test for uniformity with unequal cells. J. Statist. Comput. Simul. 73 (2003), 545–561 DOI 10.1080/0094965021000060918 | MR 1998668 | Zbl 1054.62057
[8] Kallenberg W. C. M., Oosterhoff, J., Schriever B. F.: The number of classes in chi-squared goodness-of-fit tests. J. Amer. Statist. Assoc. 80 (1985), 959–968 DOI 10.1080/01621459.1985.10478211 | MR 0819601 | Zbl 0582.62037
[9] Liese F., Vajda I.: Convex Statistical Distances. Teubner Verlag, Leipzig 1987 MR 0926905 | Zbl 0656.62004
[10] Mann H. B., Wald A.: On the choice of the number of intervals in the application of the chi-squared test. Ann. Math. Statist. 13 (1942), 306–317 DOI 10.1214/aoms/1177731569 | MR 0007224
[11] Mayoral A. M., Morales D., Morales, J., Vajda I.: On efficiency of estimation and testing with data quantized to fixed numbers of cells. Metrika 57 (2003), 1–27 DOI 10.1007/s001840100178 | MR 1963708
[12] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Asymptotic distributions of $f$-divergences of hypotetical and observed frequencies in sparse testing schemes. Statist. Neerlandica 8 (1998), 313–328
[13] Menéndez M. L., Morales D., Pardo, L., Vajda I.: Approximations to powers of $\phi $-disparity goodness of fit tests. Comm. Statist. – Theory Methods 8 (2001), 313–328 MR 1862592 | Zbl 1008.62540
[14] Morris C.: Central limit theorems for multinomial sums. Ann. Statist. 3 (1975), 165–188 DOI 10.1214/aos/1176343006 | MR 0370871 | Zbl 0305.62013
[15] Vajda I.: On the $f$-divergence and singularity of probability measures. Period. Math. Hungar. 2 (1972), 223–234 DOI 10.1007/BF02018663 | MR 0335163 | Zbl 0248.62001
[16] Vajda I.: On convergence of information contained in quantized observations. IEEE Trans. Inform. Theory 48 (2002), 2163–2172 DOI 10.1109/TIT.2002.800497 | MR 1930280 | Zbl 1062.94533
[17] Vajda I.: Asymptotic laws for stochastic disparity statistics. Tatra Mount. Math. Publ. 26 (2003), 269–280 MR 2055183 | Zbl 1154.62334
Partner of
EuDML logo