[1] Baets B. De, Fodor J.:
Twenty years of fuzzy preference structures (1978 – 1997). Belg. J. Oper. Res. Statist. Comput. Sci. 37 (1997), 61–81
MR 1619319 |
Zbl 0926.91012
[2] Baets B. De, Fodor J.: Generator triplets of additive preference structures. Academia Press, Gent 2003, pp. 15–25
[3] Baets B. De, Mayer H. De: The Frank family in fuzzy similarity measurement. In: Proc. Eusflat, Leicester 2001, pp. 15–23
[4] Fodor J., Roubens M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer Academic Publishers, Dordrecht 1994
[5] Fodor J., Jenei S.:
On reversible triangular t-norms. Fuzzy Sets and Systems 104 (1999), 1, 43–51
MR 1685808
[8] Kimberling C.:
On a class of associative function. Publ. Math. Debrecen 20 (1973), 21–39
MR 0333504
[9] Klement E. P., Mesiar, R., Pap E.:
On some geometric tranformations of t-norms. Mathware & Soft Computing 5 (1998), 57–67
MR 1632763
[10] Klement E. P., Mesiar, R., Pap E.:
Invariant copulas. Kybernetika 38 (2002), 275–285
MR 1944309
[12] Klement E. P., Mesiar, R., Pap E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000
MR 1790096 |
Zbl 1087.20041
[13] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. Summmer School on Aggregation Operators and their Applications, Oviedo 2001, pp. 71–75
[16] Moyniham R.: On $\tau _{T}$ semigroups of probability distributions II. Aequationes Math. 17 (1978), 19–40
[19] Šabo M.: Fuzzy preference structures and t-reversible t-norm. Busefal 76 (1998), 29–33
[21] Walle B. Van de, Baets, B. De, Kerre E. E.: A comparative study of completeness conditions in fuzzy preference structures. In: Proc. IFSA’97, Prague, Vol. III, pp. 74–79