Previous |  Up |  Next

Article

Keywords:
MV-algebras; Loomis–Sikorski theorem; tribe; spectral decomposition; lattice effect algebras; compatibility; block
Summary:
MV-algebras were introduced by Chang, 1958 as algebraic bases for multi-valued logic. MV stands for “multi-valued" and MV algebras have already occupied an important place in the realm of nonstandard (mathematical) logic applied in several fields including cybernetics. In the present paper, using the Loomis–Sikorski theorem for $\sigma $-MV-algebras, we prove that, with every element $a$ in a $\sigma $-MV algebra $M$, a spectral measure (i. e. an observable) $\Lambda _a: {\mathcal{B}}([0,1])\rightarrow {\mathcal{B}}(M)$ can be associated, where ${\mathcal{B}}(M)$ denotes the Boolean $\sigma $-algebra of idempotent elements in $M$. This result is similar to the spectral theorem for self-adjoint operators on a Hilbert space. We also prove that MV-algebra operations are reflected by the functional calculus of observables.
References:
[1] Belluce L. P.: Semisimple algebras of infinite valued logic and Bold fuzzy set theory. Canad. J. Math. 38 (1986), 1356–1379 DOI 10.4153/CJM-1986-069-0 | MR 0873417 | Zbl 0625.03009
[2] Busch P., Lahti P. J., Mittelstaedt P.: The Quantum Theory of Measurement. Springer–Verlag, Berlin 1991 MR 1176754 | Zbl 0868.46051
[3] Butnariu D., Klement E.: Triangular-norm-based measures and their Markov kernel representation. J. Math. Anal. Appl. 162 (1991), 111–143 DOI 10.1016/0022-247X(91)90181-X | MR 1135265 | Zbl 0751.60003
[4] Barbieri G., Weber H.: Measures on clans and on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 22, pp. 911–945 MR 1954632 | Zbl 1019.28009
[5] Cattaneo G., Giuntini, R., Pulmannová S.: Pre-BZ and degenerate BZ posets: Applications to fuzzy sets and unsharp quantum theories. Found. Phys. 30 (2000), 1765–1799 DOI 10.1023/A:1026462620062 | MR 1810201
[6] Chang C. C.: Algebraic analysis of many-valued logics. Trans. Amer. Math. Soc. 88 (1958), 467–490 DOI 10.1090/S0002-9947-1958-0094302-9 | MR 0094302 | Zbl 0084.00704
[7] Chang C. C.: A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80 MR 0122718 | Zbl 0093.01104
[8] Chovanec F., Kôpka F.: D-lattices. Internat. J. Theor. Phys. 34 (1995), 1297–1302 DOI 10.1007/BF00676241 | MR 1353674 | Zbl 0840.03046
[9] Cignoli R., D’Ottaviano I. M. L., Mundici D.: Algebraic Foundation of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000 MR 1786097
[10] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy on effect algebras with the Riesz decomposition property I, II. Kybernetika 41 (2005), 143–160, 161–176
[11] Chiara M. Dalla, Giuntini, R., Greechie R.: Reasoning in Quantum Theory. Kluwer Academic Publishers, Dordrecht 2004 MR 2069854
[12] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 DOI 10.1017/S1446788700001993 | MR 1738040 | Zbl 0958.06006
[13] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000 MR 1861369
[14] Foulis D. J., Bennett M. K.: Effect algebras and unsharp quantum logic. Found. Phys. 24 (1994), 1325–1346 DOI 10.1007/BF02283036 | MR 1304942
[15] Halmos P. R.: Measure Theory. Van Nostrand, Princeton, New Jersey 1962 MR 0033869 | Zbl 0283.28001
[16] Kôpka F., Chovanec F.: D-posets. Math. Slovaca 44 (1994), 21–34 MR 1290269
[17] Mundici D.: Interpretation of AF C*-algebras in Lukasiewicz sentential calculus. J. Funct. Anal. 65 (1986), 15–63 DOI 10.1016/0022-1236(86)90015-7 | MR 0819173
[18] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Adv. Appl. Math. 22 (1999), 227–248 DOI 10.1006/aama.1998.0631 | MR 1659410 | Zbl 0926.06004
[19] Pták P., Pulmannová S.: Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht and VEDA, Bratislava 1991 MR 1176314
[20] Pulmannová S.: Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups. J. Math. Anal. Appl. (to appear) MR 2154046 | Zbl 1072.06014
[21] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 21, pp. 869–909 MR 1954631 | Zbl 1017.28002
[22] Riečan B., Neubrunn T.: Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1997 MR 1489521 | Zbl 0916.28001
[23] Varadarajan V. S.: Geometry of Quantum Theory. Springer–Verlag, New York 1985 MR 0805158 | Zbl 0581.46061
Partner of
EuDML logo