[2] Busch P., Lahti P. J., Mittelstaedt P.:
The Quantum Theory of Measurement. Springer–Verlag, Berlin 1991
MR 1176754 |
Zbl 0868.46051
[4] Barbieri G., Weber H.:
Measures on clans and on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 22, pp. 911–945
MR 1954632 |
Zbl 1019.28009
[5] Cattaneo G., Giuntini, R., Pulmannová S.:
Pre-BZ and degenerate BZ posets: Applications to fuzzy sets and unsharp quantum theories. Found. Phys. 30 (2000), 1765–1799
DOI 10.1023/A:1026462620062 |
MR 1810201
[7] Chang C. C.:
A new proof of the completeness of the Lukasiewicz axioms. Trans. Amer. Math. Soc. 93 (1959), 74–80
MR 0122718 |
Zbl 0093.01104
[9] Cignoli R., D’Ottaviano I. M. L., Mundici D.:
Algebraic Foundation of Many-Valued Reasoning. Kluwer Academic Publishers, Dordrecht 2000
MR 1786097
[10] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy on effect algebras with the Riesz decomposition property I, II. Kybernetika 41 (2005), 143–160, 161–176
[11] Chiara M. Dalla, Giuntini, R., Greechie R.:
Reasoning in Quantum Theory. Kluwer Academic Publishers, Dordrecht 2004
MR 2069854
[13] Dvurečenskij A., Pulmannová S.:
New Trends in Quantum Structures. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 2000
MR 1861369
[16] Kôpka F., Chovanec F.:
D-posets. Math. Slovaca 44 (1994), 21–34
MR 1290269
[19] Pták P., Pulmannová S.:
Orthomodular Structures as Quantum Logics. Kluwer Academic Publishers, Dordrecht and VEDA, Bratislava 1991
MR 1176314
[20] Pulmannová S.:
Spectral resolutions in Dedekind $\sigma $-complete $\ell $-groups. J. Math. Anal. Appl. (to appear)
MR 2154046 |
Zbl 1072.06014
[21] Riečan B., Mundici D.:
Probability on MV-algebras. In: Handbook of Measure Theory, Vol. II (E. Pap, ed.), Elsevier, Amsterdam 2002, Chapt. 21, pp. 869–909
MR 1954631 |
Zbl 1017.28002
[22] Riečan B., Neubrunn T.:
Integral, Measure and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1997
MR 1489521 |
Zbl 0916.28001