Previous |  Up |  Next

Article

Keywords:
effect algebra; Riesz decomposition property; MV-algebra; state; entropy
Summary:
We study the entropy mainly on special effect algebras with (RDP), namely on tribes of fuzzy sets and sigma-complete MV-algebras. We generalize results from [RiMu] and [RiNe] which were known only for special tribes.
References:
[1] Butnariu D., Klement P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, Dordrecht 199.
[2] Nola A. Di, Dvurečenskij A., Hyčko, M., Manara C.: Entropy of effect algebras with the Riesz decomposition property I: Basic properties. Kybernetika 41 (2005), 143–160 MR 2138765
[3] Nola A. Di, Dvurečenskij, A., Jakubík J.: Good and bad infinitesimals, and states on pseudo MV-algebras, submitte.
[4] Dvurečenskij A.: Loomis–Sikorski theorem for $\sigma $-complete MV-algebras and $\ell $-groups. J. Austral. Math. Soc. Ser. A 68 (2000), 261–277 DOI 10.1017/S1446788700001993 | MR 1738040 | Zbl 0958.06006
[5] Dvurečenskij A.: MV-observables and MV-algebras. J. Math. Anal. Appl. 259 (2001), 413–428 DOI 10.1006/jmaa.2000.7409 | MR 1842068 | Zbl 0992.03081
[6] Dvurečenskij A.: Central elements and Cantor–Bernstein’s theorem for pseudo-effect alegbras. J. Austral. Math. Soc. 74 (2003), 121–143 DOI 10.1017/S1446788700003177 | MR 1948263
[7] Dvurečenskij A.: Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups, submitte.
[8] Dvurečenskij A.: Product effect algebras. Inter. J. Theor. Phys. 41 (2002), 1827–1839 MR 1944619 | Zbl 1014.81004
[9] Dvurečenskij A., Pulmannová S.: New Trends in Quantum Structures, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 200. MR 1861369
[10] Fuchs L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford – London – New York – Paris 1963 MR 0171864 | Zbl 0137.02001
[11] Goodearl K. R.: Partially Ordered Abelian Groups with Interpolation. (Math. Surveys and Monographs No. 20.) Amer. Math. Society, Providence, RI 1986 MR 0845783 | Zbl 0589.06008
[12] Mundici D.: Tensor products and the Loomis–Sikorski theorem for MV-algebras. Advan. Appl. Math. 22 (1999), 227–248 DOI 10.1006/aama.1998.0631 | MR 1659410 | Zbl 0926.06004
[13] Riečan B.: Kolmogorov–Sinaj entropy on MV-algebras, submitte.
[14] Riečan B., Mundici D.: Probability on MV-algebras. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier Science, Amsterdam 2002, Vol. II, pp. 869–909 MR 1954631 | Zbl 1017.28002
[15] Riečan B., Neubrunn T.: Integral, Measure and Ordering, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 199. MR 1489521
Partner of
EuDML logo