[3] Dontchev A. D., Rockafellar R. T.:
Characterization of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 7 (1996), 1087–1105
DOI 10.1137/S1052623495284029 |
MR 1416530
[6] Harker P. T., Choi S. C.:
A Penalty Function Approach for Mathematical Programs with Variational Inequality Constraints. WP 87-08-08, University of Pennsylvania
Zbl 0732.90075
[7] Hu X., Ralph D., Ralph E. K., Bardsley, P., Ferris M. C.: The Effect of Transmission Capacities on Competition in Deregulated Electricity Markets. Preprint 2002
[8] Luo Z.-Q., Pang J.-S., Ralph D.:
Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge 1996
MR 1419501 |
Zbl 1139.90003
[9] Mordukhovich B. S.:
Approximation Methods in Problems of Optimization and Control (in Russian). Nauka, Moscow 1988
MR 0945143
[11] Mordukhovich B. S.:
Optimization and Equilibrium Problems with Equilibrium Constraints. Preprint 2003. To appear in Omega
MR 2473868 |
Zbl 1161.49015
[16] Outrata J. V.:
On constrained qualifications for mathematical programs with mixed complementarity constraints. In: Complementarity: Applications, Algorithms and Extensions (M. C. Ferris, O. L. Mangasarian and J.-S. Pang, eds.), Kluwer, Dordrecht 2001, pp. 253–272
MR 1818625
[18] Outrata J. V., Kočvara, M., Zowe J.:
Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht 1998
MR 1641213 |
Zbl 0947.90093
[20] Scholtes S.: On the existence and computation of EPEC solutions. A talk given at the ICCP Conference in Cambridge, 2002
[21] Scheel H., Scholtes S.:
Mathematical programs with equilibrium constraints: Stationarity, optimality and sensitivity. Math. Oper. Res. 25 (2000), 1–22
DOI 10.1287/moor.25.1.1.15213 |
MR 1854317