Previous |  Up |  Next

Article

Keywords:
fuzzy number; extension principles; $t$-norms
Summary:
We consider the question whether, for given fuzzy numbers, there are different pairs of $t$-norm such that the resulting membership function within the extension principle under addition are identical. Some examples are given.
References:
[1] Baets B. D., Marková–Stupňanová A.: Analytical expressions for the addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 203–213 DOI 10.1016/S0165-0114(97)00141-3 | MR 1480046 | Zbl 0919.04005
[2] Dubois D., Prade H.: Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York 1980 MR 0589341 | Zbl 0444.94049
[3] Dubois D., Prade H.: Additions of interactive fuzzy numbers. IEEE Trans. Automat. Control 26 (1981), 926–936 DOI 10.1109/TAC.1981.1102744 | MR 0635852
[4] Fullér R.: On product sum of triangular fuzzy numbers. Fuzzy Sets and Systems 41 (1991), 83–87 DOI 10.1016/0165-0114(91)90158-M | MR 1104983 | Zbl 0725.04002
[5] Fullér R., Keresztfalvi T.: t-norm-based addition of fuzzy intervals. Fuzzy Sets and Systems 51 (1992), 155–159 DOI 10.1016/0165-0114(92)90188-A | MR 1188307
[6] Fullér R., Zimmermann H. J.: On computation of the compositional rule of inference under triangular norms. Fuzzy Sets and Systems 51 (1992), 267–275 DOI 10.1016/0165-0114(92)90017-X | MR 1192447 | Zbl 0782.68110
[7] Gebhardt A.: On types of fuzzy numbers and extension principles. Fuzzy Sets and Systems 75 (1995), 311–318 DOI 10.1016/0165-0114(94)00384-J | MR 1358717 | Zbl 0864.26010
[8] Hong D. H.: A note on product-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 66 (1994), 381–382 DOI 10.1016/0165-0114(94)90106-6 | MR 1300295 | Zbl 0844.04005
[9] Hong D. H., Hwang S. Y.: On the compositional rule of inference under triangular norms. Fuzzy Sets and Systems 66 (1994), 24–38 MR 1294689 | Zbl 1018.03511
[10] Hong D. H., Hwang S. Y.: On the convergence of $T$-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 63 (1994), 175–180 DOI 10.1016/0165-0114(94)90347-6 | MR 1275891 | Zbl 0844.04004
[11] Hong D. H., Hwang C.: A $T$-sum bound of $LR$-fuzzy numbers. Fuzzy Sets and Systems 91 (1997), 239–252 DOI 10.1016/S0165-0114(97)00144-9 | MR 1480049 | Zbl 0920.04010
[12] Hong D. H.: Some results on the addition of fuzzy intervals. Fuzzy Sets and Systems 122 (2001), 349–352 DOI 10.1016/S0165-0114(00)00005-1 | MR 1854823 | Zbl 1010.03524
[13] Hong D. H.: On shape-preserving additions of fuzzy intervals. J. Math. Anal. Appl. 267 (2002), 369–376 DOI 10.1006/jmaa.2001.7788 | MR 1886835 | Zbl 0993.03070
[14] Kolesárová A.: Triangular norm-based addition of linear fuzzy numbers. Tatra Mountains Math. Publ. 6 (1995), 75–81 MR 1363985 | Zbl 0851.04005
[15] Kolesárová K.: Triangular norm-based addition preserving linearity of T-sums of linear fuzzy intervals. Mathware and Soft Computing 5 (1998), 91–98 MR 1632755 | Zbl 0934.03064
[16] Mareš M., Mesiar R.: Composition of shape generators. Acta Math. Inform. Univ. Ostraviensis 4 (1996), 37–46 MR 1446782 | Zbl 0870.04003
[17] Marková–Stupňanová A.: A note to the addition of fuzzy numbers based on a continuous Archimedean $t$-norm. Fuzzy Sets and Systems 91 (1997), 253–258 Zbl 0919.04010
[18] Marková A.: $T$-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 85 (1997), 379–384 DOI 10.1016/0165-0114(95)00370-3 | MR 1428314
[19] Mesiar R.: Triangular norm-based addition of fuzzy intervals. Fuzzy Sets and Systems 91 (1997), 231–237 DOI 10.1016/S0165-0114(97)00143-7 | MR 1480048 | Zbl 0919.04011
[20] Mesiar R.: A note to the $T$-sum of $L$-$R$ fuzzy numbers. Fuzzy Sets and Systems 87 (1996), 259–261 DOI 10.1016/0165-0114(95)00178-6 | MR 1388398 | Zbl 0871.04010
[21] Mesiar R.: Shape preserving additions of fuzzy intervals. Fuzzy Sets and Systems 86 (1997), 73–78 DOI 10.1016/0165-0114(95)00401-7 | MR 1438439 | Zbl 0921.04002
Partner of
EuDML logo