[1] Battiti R.:
Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 (1994), 537–550
DOI 10.1109/72.298224
[2] Dempster A. P., Laird N. M., Rubin D. B.:
Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 (1977), 1–38
MR 0501537 |
Zbl 0364.62022
[3] Forman G.: An experimental study of feature selection metrics for text categorization. J. Mach. Learning Res. 3 (2003), 1289–1305
[4] Joachims T.: Text categorization with support vector machines: Learning with many relevant features. In: Proc. 10th European Conference on Machine Learning (ECML’98), 1998, pp. 137–142
[6] Kwak N., Choi C.: Improved mutual information feature selector for neural networks in supervised learning. In: Proc. Internat. Joint Conference on Neural Networks (IJCNN ’99), 1999 pp. 1313–1318
[7] McCallum A., Nigam K.: A comparison of event models for naive Bayes text classification. In: Proc. AAAI-98 Workshop on Learning for Text Categorization, 1998
[9] Mladenic D., Grobelnik M.: Feature selection for unbalanced class distribution and Naive Bayes. In: Proc. Sixteenth Internat. Conference on Machine Learning, 1999, pp. 258–267
[11] Novovičová J., Pudil, P., Kittler J.:
Divergence based feature selection for multimodal class densities. IEEE Trans. Pattern Anal. Machine Intell. 18 (1996), 218–223
DOI 10.1109/34.481557
[12] Novovičová J., Malík A.: Text Document Classification Using Finite Mixtures. Research Report No. 2063, Institute of Information Theory and Automation, Prague 2002
[13] Novovičová J., Malík A.: Application of multinomial mixture model to text classification. In: Pattern Recognition and Image Analysis (Lecture Notes in Computer Sciences 2652), Springer–Verlag, Berlin 2003, pp. 646–653
[14] Novovičová J., Malík, A., Pudil P.:
Feature selection using improved mutual information for text classification. In: Structural, Syntactic and Statistical Pattern Recognition (Lecture Notes in Computer Science), Springer–Verlag, Berlin 2004 (in press)
Zbl 1104.68663
[15] Pudil P., Novovičová, J., Kittler J.:
Feature selection based on approximation of class densities by finite mixtures of special type. Pattern Recognition 28 (1995), 1389–1398
DOI 10.1016/0031-3203(94)00009-B
[16] Ueda N., Saito K.: Parametric mixture models for multi-labeled text. In: Proc. Neural Information Processing Systems, 2003
[17] Yang Y., Pedersen J. O.: A comparative study on feature selection in text categorization. In: Proc. Internat. Conference on Machine Learning, 1997, pp. 412–420
[18] Yang Y., Liu X.: A re-examination of text categorization methods. In: Proc. 22nd Internat. ACM SIGIR Conference on Research and Development in Inform. Retrieval, 1999, pp. 42–49
[19] Yang Y.:
An evaluation of statistical approaches to text categorization. J. Inform. Retrieval 1 (1999), 67–88
DOI 10.1023/A:1009982220290
[20] Yang Y., Zhang, J., Kisiel B.: A scalability analysis of classifier in text categorization. In: Proc. 26th ACM SIGIR Conference on Research and Development in Inform. Retrieval, 2003