Previous |  Up |  Next

Article

Keywords:
non-additive measure; monotone set function; condition (E); Egoroff's theorem
Summary:
In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality.
References:
[1] Halmos P. R.: Measure Theory. Van Nostrand, New York 1968 MR 0033869 | Zbl 0283.28001
[2] Li J., Yasuda M., Jiang Q., Suzuki H., Wang, Z., Klir G. J.: Convergence of sequence of measurable functions on fuzzy measure space. Fuzzy Sets and Systems 87 (1997), 317–323 MR 1449484
[3] Li J.: On Egoroff’s theorems on fuzzy measure space. Fuzzy Sets and Systems 135 (2003), 367–375 DOI 10.1016/S0165-0114(02)00219-1 | MR 1979605
[4] Li J.: Order continuity of monotone set function and convergence of measurable functions sequence. Applied Mathematics and Computation 135 (2003), 211–218 DOI 10.1016/S0096-3003(01)00317-4 | MR 1937247
[5] Li J., Yasuda M.: Egoroff’s theorems on monotone non-additive measure space. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems (to appear) MR 2052989
[6] Pap E.: Null-additive Set Functions. Kluwer, Dordrecht 1995 MR 1368630 | Zbl 1003.28012
[7] Ralescu D., Adams G.: The fuzzy integral. J. Math. Anal. Appl. 75 (1980), 562–570 DOI 10.1016/0022-247X(80)90101-8 | MR 0581840 | Zbl 0438.28007
[8] Taylor S. J.: An alternative form of Egoroff’s theorem. Fundamenta Mathematicae 48 (1960), 169–174 MR 0117311 | Zbl 0098.26502
[9] Wagner E., Wilczyński W.: Convergence almost everywhere of sequences of measurable functions. Colloquium Mathematicum 45 (1981), 119–124 MR 0652608 | Zbl 0497.28006
[10] Wang Z.: The autocontinuity of set function and the fuzzy integral. J. Math. Anal. Appl. 99 (1984), 195–218 DOI 10.1016/0022-247X(84)90243-9 | MR 0732712 | Zbl 0581.28003
[11] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 MR 1212086 | Zbl 0812.28010
Partner of
EuDML logo