Previous |  Up |  Next

Article

Keywords:
controllability; phase space; neutral functional integrodifferential system; Schauder fixed point theorem
Summary:
Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.
References:
[1] Balachandran K., Dauer J. P., Balasubramaniam P.: Controllability of nonlinear integrodifferential systems in Banach spaces. J. Optim. Theory Appl. 84 (1995), 83–91 DOI 10.1007/BF02191736 | MR 1312963
[2] Balachandran K., Dauer J. P., Balasubramaniam P.: Local null controllability of nonlinear functional differential systems in Banach spaces. J. Optim. Theory Appl. 88 (1995), 61–75 DOI 10.1007/BF02192022 | MR 1367033
[3] Balachandran K., Sakthivel R.: Controllability of neutral functional integrodifferential systems in Banach Spaces. Comput. Math. Appl. 39 (2000), 117–126 DOI 10.1016/S0898-1221(99)00318-1 | MR 1729423 | Zbl 0982.93019
[4] Han H. K., Park J. Y., Park D. G.: Controllability of integrodifferential equations in Banach spaces. Bull. Korean Math. Soc. 36 (1999), 533–541 MR 1722184 | Zbl 0934.35020
[5] Hale J. K., Kato J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21 (1978), 11–41 MR 0492721 | Zbl 0383.34055
[6] Henriquez H. R.: Periodic solutions of quasilinear partial functional differential equations with unbounded delay. Funkcial. Ekvac. 37 (1994), 329–343 MR 1299869
[7] Henriquez H. R.: Regularity of solutions of abstract retarded functional differential equations with unbounded delay. Nonlinear Anal., Theory, Methods and Applications 28 (1997), 513–531 DOI 10.1016/0362-546X(95)00160-W | MR 1420796 | Zbl 0864.35112
[8] Hernandez E., Henriquez H. R.: Existence results for partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 452–475 DOI 10.1006/jmaa.1997.5875 | MR 1621730 | Zbl 0915.35110
[9] Hino Y., Murakami, S., Naito T.: Functional Differential Equations with Infinite Delay. (Lecture Notes in Mathematics 1473.) Springer–Verlag, Berlin 1991 MR 1122588 | Zbl 0732.34051
[10] Park J. Y., Han H. K.: Controllability of nonlinear functional integrodifferential systems in Banach spaces. Nihonkai Math. J. 8 (1997), 47–53 MR 1454807
[11] Quinn M. D., Carmichael N.: An approach to nonlinear control problems using fixed point methods, degree theory and pseudo-inverse. Numer. Functional Anal. Optim. 7 (1984–1985), 197-219 DOI 10.1080/01630568508816189 | MR 0767382
[12] Shin J. S.: An existence theorem of functional differential equations with infinite delay in a Banach space. Funkcial. Ekvac. 30 (1987), 19–29 MR 0915258 | Zbl 0647.34066
Partner of
EuDML logo