Previous |  Up |  Next

Article

Title: Optimal chemical balance weighing designs for $v+1$ objects (English)
Author: Ceranka, Bronisław
Author: Graczyk, Małgorzata
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 39
Issue: 3
Year: 2003
Pages: [333]-340
Summary lang: English
.
Category: math
.
Summary: The paper studies the estimation problem of individual weights of objects using a chemical balance weighing design under the restriction on the number times in which each object is weighed. Conditions under which the existence of an optimum chemical balance weighing design for $p = v$ objects implies the existence of an optimum chemical balance weighing design for $p = v + 1$ objects are given. The existence of an optimum chemical balance weighing design for $p = v + 1$ objects implies the existence of an optimum chemical balance weighing design for each $p < v + 1$. The new construction method for optimum chemical balance weighing design for $p = v + 1$ objects is given. It uses the incidence matrices of ternary balanced block designs for v treatments. (English)
Keyword: chemical balance weighing design
Keyword: ternary balanced block design
MSC: 62K05
MSC: 62K10
MSC: 62K15
MSC: 92E20
idZBL: Zbl 1248.62128
idMR: MR1995737
.
Date available: 2009-09-24T19:54:24Z
Last updated: 2015-03-23
Stable URL: http://hdl.handle.net/10338.dmlcz/135535
.
Reference: [1] Banerjee K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics.Marcel Dekker, New York 1975 Zbl 0334.62030, MR 0458751
Reference: [2] Billington E. J.: Balanced $n$-array designs: a combinatorial survey and some new results.Ars Combin. 17A (1984), 37–72 MR 0746174
Reference: [3] Billington E. J., Robinson P. J.: A list of balanced ternary block designs with $r \le 15$ and some necessary existence conditions.Ars Combin. 16 (1983), 235–258 MR 0734059
Reference: [4] Ceranka B., Graczyk M.: Optimum chemical balance weighing designs under the restriction on weighings.Discuss. Math. 21 (2001), 111–120 MR 1961022, 10.7151/dmps.1024
Reference: [5] Ceranka B., Katulska K.: On some optimum chemical balance weighing designs for $v+1$ objects.J. Japan Statist. Soc. 18 (1988), 47–50 Zbl 0651.62072, MR 0959679
Reference: [6] Ceranka B., Katulska K.: Chemical balance weighing designs under the restriction on the number of objects placed on the pans.Tatra Mt. Math. Publ. 17 (1999), 141–148 Zbl 0988.62047, MR 1737701
Reference: [7] Ceranka B., Katulska, K., Mizera D.: The application of ternary balanced block designs to chemical balance weighing designs.Discuss. Math. 18 (1998), 179–185 MR 1687875
Reference: [8] Hotelling H.: Some improvements in weighing and other experimental techniques.Ann. Math. Statist. 15 (1944), 297–305 Zbl 0063.02076, MR 0010951, 10.1214/aoms/1177731236
Reference: [9] Raghavarao D.: Constructions and Combinatorial Problems in Designs of Experiments.Wiley, New York 1971 MR 0365935
Reference: [10] Saha G. M., Kageyama S.: Balanced arrays and weighing designs.Austral. J. Statist. 26 (1984), 119–124 Zbl 0599.62089, MR 0766612, 10.1111/j.1467-842X.1984.tb01225.x
Reference: [11] Shah K. R., Sinha B. L.: Theory of Optimal Designs.Springer, Berlin 1989 Zbl 0688.62043, MR 1016151
Reference: [12] Swamy M. N.: Use of balanced bipartite weighing designs as chemical balance designs.Comm. Statist. Theory Methods 11 (1982), 769–785 Zbl 0514.62086, MR 0651611, 10.1080/03610928208828270
.

Files

Files Size Format View
Kybernetika_39-2003-3_9.pdf 856.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo