Previous |  Up |  Next

Article

Keywords:
idempotentmeasures; quantum large deviations
Summary:
We give an approach to large deviation type asymptotic problems without evident probabilistic representation behind. An example provided by the mean field models of quantum statistical mechanics is considered.
References:
[1] Bourbaki N.: Intégration, Chap. 6. Hermann, Paris 1959 MR 0124722 | Zbl 0213.07501
[2] Breyer V., Gulinsky O.: Large deviations on infinite dimentional spaces (in Russian). Preprint of MIPT, Moscow 1996
[3] Bryc W.: Large deviations by the asymptotic value method. In: Diffusion Processes and Related Problems in Analysis (M. Pinski, ed.), Birkhäuser, Boston 1990, pp. 447–472 MR 1110177 | Zbl 0724.60032
[4] Choquet G.: Theory of capacities. Ann. Inst. Fourier 5 (1955), 131–295 DOI 10.5802/aif.53 | MR 0080760
[5] Davies E. B., Simon B.: Ultracontractivity and the heat kernal for Schrödinger operators and Dirichlet laplacians. J. Funct. Anal. 59 (1984), 335–395 DOI 10.1016/0022-1236(84)90076-4 | MR 0766493
[6] Kolokoltsov V. N., Maslov V. P.: The general form of the endomorphisms in the space of continuous functions with values in a numerical semiring with the operation $\oplus =\max $. Soviet Math. Dokl. 36 (1988), 1, 55–59 MR 0902683
[7] Minlos R. A., Verbeure, A., Zagrebnov V.: A quantum crystal model in the light-mass limit: Gibbs state. Rev. Math. Phys. 12 (2000), 981–1032 DOI 10.1142/S0129055X00000381 | MR 1782692
[9] Puhalskii A.: Large deviations of semimartingales via convergence of the predictable characteristics. Stochastics 49 (1994), 27–85 MR 1784438 | Zbl 0827.60017
[10] Puhalskii A.: The method of stochastic exponentials for large deviations. Stochastic Process. Appl. 54 (1994), 45–70 MR 1302694
Partner of
EuDML logo