Previous |  Up |  Next

Article

Keywords:
Hilbert geometry; Thompson’s part metric; non-expansive map; symmetric cone; cycle time; topical map; iterates
Summary:
The cycle time of an operator on $R^n$ gives information about the long term behaviour of its iterates. We generalise this notion to operators on symmetric cones. We show that these cones, endowed with either Hilbert’s projective metric or Thompson’s metric, satisfy Busemann’s definition of a space of non- positive curvature. We then deduce that, on a strictly convex symmetric cone, the cycle time exists for all maps which are non-expansive in both these metrics. We also review an analogue for the Hilbert metric of the Denjoy-Wolff theorem.
References:
[1] Beardon A. F.: The dynamics of contractions. Ergodic Theory Dynamical Systems 17 (1997), 6, 1257–1266 DOI 10.1017/S0143385797086434 | MR 1488316 | Zbl 0952.54023
[2] Bhagwat K. V., Subramanian R.: Inequalities between means of positive operators. Math. Proc. Cambridge Philos. Soc. 83 (1978), 3, 393–401 DOI 10.1017/S0305004100054670 | MR 0467372 | Zbl 0375.47017
[3] Busemann H.: The Geometry of Geodesics. Academic Press, New York 1955 MR 0075623 | Zbl 1141.53001
[4] Corach G., Porta, H., Recht L.: A geometric interpretation of Segal’s inequality. Proc. Amer. Math. Soc. 115 (1992), 1, 229–231 MR 1075945 | Zbl 0749.58010
[5] Corach G., Porta, H., Recht L.: Convexity of the geodesic distance on spaces of positive operators. Illinois J. Math. 38 (1994), 1, 87–94 MR 1245836 | Zbl 0802.53012
[6] Donoghue W. F.: Monotone Matrix Functions and Analytic Continuation. Springer–Verlag, Berlin 1974 MR 0486556 | Zbl 0278.30004
[7] Faraut J., Korányi A.: Analysis on Symmetric Cones. Oxford, 1994 MR 1446489 | Zbl 0841.43002
[8] Gaubert S., Gunawardena J.: A non-linear hierarchy for discrete event dynamical systems. In: Proceedings WODES’98, Cagliari 1998
[9] Gunawardena J.: From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293 (2003), 141–167 DOI 10.1016/S0304-3975(02)00235-9 | MR 1957616 | Zbl 1036.93045
[10] Gunawardena J., Keane M.: On the Existence of Cycle Times for Some Nonexpansive Maps. HPL-BRIMS-95-03, Hewlett-Packard Labs, 1995
[11] Kohlberg E., Neyman A.: Asymptotic behavior of nonexpansive mappings in normed linear spaces. Israel J. Math. 38 (1981), 4, 269–275 DOI 10.1007/BF02762772 | MR 0617673 | Zbl 0476.47045
[12] Nussbaum R. D.: Hilbert’s Projective Metric and Iterated Nonlinear Maps. Amer. Math. Soc., 1998 Zbl 0666.47028
[13] Nussbaum R. D.: Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations. Differential and Int. Equations 7 (1994), 6, 1649–1707 MR 1269677 | Zbl 0844.58010
[14] Plant A. T., Reich S.: The asymptotics of nonexpansive iterations. J. Func. Anal. 54 (1983), 3, 308–319 DOI 10.1016/0022-1236(83)90003-4 | MR 0724526 | Zbl 0542.47045
[15] Reich S., Shafrir I.: Nonexpansive Iterations in Hyperbolic Spaces. Nonlinear Anal., Theory, Methods & Appls 15 (1990), 6, 537–558 DOI 10.1016/0362-546X(90)90058-O | MR 1072312 | Zbl 0728.47043
[16] Sine R.: Behavior of iterates in the Poincaré metric. Houston J. Math. 15 (1989), 2, 273–289 MR 1022069 | Zbl 0712.47049
Partner of
EuDML logo