Article
Keywords:
discrete-event dynamic systems; max-plus algebra; systems of linear equations; approximation
Summary:
We propose an efficient method for finding a Chebyshev-best soluble approximation to an insoluble system of linear equations over max-plus algebra.
References:
[1] Baccelli F. L., Cohen G., Olsder G. J., Quadrat J. P.:
Synchronization and Linearity, An Algebra for Discrete Event Systems. Wiley, Chichester 1992
MR 1204266 |
Zbl 0824.93003
[2] Cechlárová K.:
A note on unsolvable systems of max-min (fuzzy) equations. Linear Algebra Appl. 310 (2000), 123–128
MR 1753171 |
Zbl 0971.15002
[3] Cechlárová K., Diko P.:
Resolving infeasibility in extremal algebras. Linear Algebra Appl. 290 (1999), 267–273
MR 1672997 |
Zbl 0932.15009
[4] A.Cuninghame-Green R.:
Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166). Springer, Berlin 1979
MR 0580321
[5] Cuninghame-Green R. A., Cechlárová K.:
Residuation in fuzzy algebra and some applications. Fuzzy Sets and Systems 71 (1995), 227–239
MR 1329610 |
Zbl 0845.04007
[6] Schutter B. De: Max-Algebraic System Theory for Discrete Event Systems. Thesis. Katholieke Universiteit Leuven, Belgium 1996