Previous |  Up |  Next

Article

Keywords:
continuous convergence; epi-convergence; stochastic programming; stability
Summary:
Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization.
References:
[1] Attouch H.: Variational Convergence for Functions and Operators. Pitman, London 1984 MR 0773850 | Zbl 0561.49012
[2] Artstein Z., Wets R. J.-B.: Stability results for stochastic programs and sensors, allowing for discontinuous objective functions. SIAM J. Optim. 4 (1994), 537-550 DOI 10.1137/0804030 | MR 1287815 | Zbl 0830.90111
[3] Artstein Z., Wets R. J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Analysis 2 (1995), 1–17 MR 1363357 | Zbl 0837.90093
[4] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-Linear Parametric Optimization. Akademie Verlag, Berlin 1982 Zbl 0502.49002
[5] Beer G.: Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht 1993 MR 1269778 | Zbl 0792.54008
[6] Cohn D. L.: Measure Theory. Birkhäuser, Boston 1980 MR 0578344 | Zbl 0860.28001
[7] Dupačová J.: Stability and sensitivity analysis in stochastic programming. Ann. Oper. Res. 27 (1990), 115–142 DOI 10.1007/BF02055193 | MR 1088990
[8] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems. Ann. Statist. 16 (1988), 1517–1549 DOI 10.1214/aos/1176351052 | MR 0964937
[9] Kall P.: Approximations to optimization problems: An elementary review. Math. Oper. Res. 11 (1986), 9–18 DOI 10.1287/moor.11.1.9 | MR 0830103
[10] Kall P.: On approximations and stability in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 MR 0909741 | Zbl 0636.90066
[11] Kaniovski Y. M., King A. J., Wets R. J.-B.: Probabilistic bounds (via large deviations) for the solution of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189–208 DOI 10.1007/BF02031707 | MR 1339792
[12] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 497–523 MR 1243755 | Zbl 0906.90133
[13] King A. J., Wets R. J.-B.: Epi-consistency of convex stochastic programs. Stochastics and Stochastics Reports 34 (1991), 83–92 DOI 10.1080/17442509108833676 | MR 1104423 | Zbl 0733.90049
[14] Langen H.-J.: Convergence of dynamic programming models. Math. Oper. Res. 6 (1981), 493–512 DOI 10.1287/moor.6.4.493 | MR 0703092 | Zbl 0496.90085
[15] Pflug G. Ch., Ruszczyňski, A., Schultz R.: On the Glivenko-Cantelli problem in stochastic programming: Linear recourse and extensions. Math. Oper. Res. 23 (1998), 204–220 DOI 10.1287/moor.23.1.204 | MR 1606474 | Zbl 0977.90031
[16] Robinson S. M.: Local epi-continuity and local optimization. Math. Programming 37 (1987), 208–222 DOI 10.1007/BF02591695 | MR 0883021 | Zbl 0623.90078
[17] Robinson S. M., Wets R. J.-B.: Stability in two-stage stochastic programming. SIAM J. Control Optim. 25 (1987), 1409–1416 DOI 10.1137/0325077 | MR 0912447 | Zbl 0639.90074
[18] Rockafellar R. T., Wets R. J.-B.: Variational Analysis. Springer–Verlag, Berlin 1998 MR 1491362 | Zbl 0888.49001
[19] Römisch W., Schultz R.: Distribution sensitivity in stochastic programming. Math. Programming 50 (1991), 197–226 DOI 10.1007/BF01594935 | MR 1103933 | Zbl 0743.90083
[20] Römisch W., Schultz R.: Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590–609 DOI 10.1287/moor.18.3.590 | MR 1250562 | Zbl 0797.90070
[21] Römisch W., Schultz R.: Lipschitz stability for stochastic programs with complete recourse. SIAM J. Optim. 6 (1996), 531–447 DOI 10.1137/0806028 | MR 1387338 | Zbl 0854.90113
[22] Römisch W., Wakolbinger A.: Obtaining convergence rates for approximations in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 327–343 MR 0909737
[23] Salinetti G., Wets R. J.-B.: On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Soc. 266 (1981), 275–289 MR 0613796 | Zbl 0501.28005
[24] Salinetti G., Wets R. J-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419 DOI 10.1287/moor.11.3.385 | MR 0852332 | Zbl 0611.60004
[25] Vogel S.: Stochastische Stabilitätskonzepte. Habilitation, Ilmenau Technical University, 1991
[26] Vogel S.: On stability in multiobjective programming – A stochastic approach. Math. Programming 56 (1992), 91–119 DOI 10.1007/BF01580896 | MR 1175561 | Zbl 0770.90061
[27] Vogel S.: A stochastic approach to stability in stochastic programming. J. Comput. Appl. Math., Series Appl. Analysis and Stochastics 56 (1994), 65–96 MR 1338637 | Zbl 0824.90107
[28] Vogel S.: On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence. Preprint of Ilmenau Technical University, 1994 MR 1338637
[29] Wang J.: Continuity of feasible solution sets of probabilistic constrained programs. J. Optim. Theory Appl. 63 (1989), 79–89 DOI 10.1007/BF00940733 | MR 1022368
[30] Wets R. J.-B.: Stochastic programming. In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 MR 1105107 | Zbl 0752.90052
[31] Zervos M.: On the epiconvergence of stochastic optimization problems. Math. Oper. Res. 24 (1999), 2, 495–508 DOI 10.1287/moor.24.2.495 | MR 1853885 | Zbl 1074.90552
Partner of
EuDML logo