[2] Artstein Z., Wets R. J.-B.:
Stability results for stochastic programs and sensors, allowing for discontinuous objective functions. SIAM J. Optim. 4 (1994), 537-550
DOI 10.1137/0804030 |
MR 1287815 |
Zbl 0830.90111
[3] Artstein Z., Wets R. J.-B.:
Consistency of minimizers and the SLLN for stochastic programs. J. Convex Analysis 2 (1995), 1–17
MR 1363357 |
Zbl 0837.90093
[4] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.:
Non-Linear Parametric Optimization. Akademie Verlag, Berlin 1982
Zbl 0502.49002
[8] Dupačová J., Wets R. J.-B.:
Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems. Ann. Statist. 16 (1988), 1517–1549
DOI 10.1214/aos/1176351052 |
MR 0964937
[10] Kall P.:
On approximations and stability in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103
MR 0909741 |
Zbl 0636.90066
[11] Kaniovski Y. M., King A. J., Wets R. J.-B.:
Probabilistic bounds (via large deviations) for the solution of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189–208
DOI 10.1007/BF02031707 |
MR 1339792
[12] Kaňková V., Lachout P.:
Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 497–523
MR 1243755 |
Zbl 0906.90133
[22] Römisch W., Wakolbinger A.:
Obtaining convergence rates for approximations in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 327–343
MR 0909737
[23] Salinetti G., Wets R. J.-B.:
On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Soc. 266 (1981), 275–289
MR 0613796 |
Zbl 0501.28005
[24] Salinetti G., Wets R. J-B.:
On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419
DOI 10.1287/moor.11.3.385 |
MR 0852332 |
Zbl 0611.60004
[25] Vogel S.: Stochastische Stabilitätskonzepte. Habilitation, Ilmenau Technical University, 1991
[27] Vogel S.:
A stochastic approach to stability in stochastic programming. J. Comput. Appl. Math., Series Appl. Analysis and Stochastics 56 (1994), 65–96
MR 1338637 |
Zbl 0824.90107
[28] Vogel S.:
On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence. Preprint of Ilmenau Technical University, 1994
MR 1338637
[29] Wang J.:
Continuity of feasible solution sets of probabilistic constrained programs. J. Optim. Theory Appl. 63 (1989), 79–89
DOI 10.1007/BF00940733 |
MR 1022368
[30] Wets R. J.-B.:
Stochastic programming. In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629
MR 1105107 |
Zbl 0752.90052