Previous |  Up |  Next

Article

Keywords:
pole; zero; nonlinear control system
Summary:
During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the nonlinear situation. We also provide nontrivial explicit examples.
References:
[1] Bourbaki N.: Algèbre Commutative. Chap. I–IV. Masson, Paris 1985 Zbl 1107.13002
[2] Bourlès H., Fliess M.: Finite poles and zeros of linear systems: an intrinsic approach. Internat. J. Control 68 (1997), 4, 897–922 DOI 10.1080/002071797223398 | MR 1689711 | Zbl 1034.93009
[3] Gerdt V. P., Blinkov Y. A.: Minimal involutive bases. Math. Comput. Simulations 45 (1998), 543–560 DOI 10.1016/S0378-4754(97)00128-6 | MR 1627130 | Zbl 1017.13501
[4] Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel 1985 MR 0789602 | Zbl 0563.13001
[5] Maisonobe P., Sabbah C.: D-Modules Cohérents et Holonomes. Travaux en Cours, 45, Hermann, Paris 1993 MR 1603676 | Zbl 0824.00033
[6] Matsumura H.: Commutative Ring Theory. (Cambridge Studies in Advanced Mathematics 8.) Cambridge University Press, Cambridge 1986 MR 0879273 | Zbl 0666.13002
[7] Pommaret J.-F.: Controllability of nonlinear multidimensional control. In: Nonlinear Control in the Year 2000, Proceedings NCN 2000 (A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds.), Springer, Paris 2000 Zbl 1127.93334
[9] Pommaret J.-F., Quadrat A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inform. 16 (1999), 275–297 DOI 10.1093/imamci/16.3.275 | MR 1706658 | Zbl 1158.93319
[10] Pommaret J.-F., Quadrat A.: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. 37 (1999), 247–260 DOI 10.1016/S0167-6911(99)00030-4 | MR 1751255 | Zbl 0948.93016
[11] Sain M. K., Schrader C. B.: Research on systems zeros: a survey. Internat. J. Control 50 (1989), 4, 1407–1433 DOI 10.1080/00207178908953438 | MR 1028424
[12] Wood J., Oberst, U., Owens D.: A behavioural approach to the pole structure of 1D and $n$D linear systems. SIAM J. Control Optim. 38 (2000), 2, 627–661 DOI 10.1137/S036301299733213X | MR 1741156
Partner of
EuDML logo