Previous |  Up |  Next

Article

Keywords:
linear multivariable system; decoupling; stability
Summary:
In this paper we present a solution to the decoupling problem with stability of linear multivariable systems with 2 outputs, using nonregular static state feedback. The problem is tackled using an algebraic-polynomial approach, and the main idea is to test the conditions for a decoupling compensator with stability to be feedback realizable. It is shown that the problem has a solution if and only if Morse’s list $I_{2}$ is greater than or equal to the infinite and unstable structure of the proper and stable part of the stable interactor of the system. A constructive procedure to find a state feedback, which achieves decoupling with stability, is also presented.
References:
[1] Descusse J., Dion J. M.: On the structure at infinity of linear square decoupled systems. IEEE Trans. Automat. Control AC-27 (1982), 971–974 DOI 10.1109/TAC.1982.1103041 | MR 0680500 | Zbl 0485.93042
[2] Descusse J., Lafay J. F., Malabre M.: Solution of the static-state feedback decoupling problem for linear systems with two outputs. IEEE Trans. Automat. Control AC-30 (1985), 914–918 DOI 10.1109/TAC.1985.1104089 | MR 0799492 | Zbl 0566.93010
[3] Descusse J., Lafay J. F., Malabre M.: Solution to Morgan’s problem. IEEE Trans. Automat. Control 33 (1988), 732–739 DOI 10.1109/9.1289 | MR 0950794 | Zbl 0656.93018
[4] Dion J. M., Commault C.: The minimal delay decoupling problem: Feedback implementation with stability. SIAM J. Control Optim. 26 (1988), 66–82 DOI 10.1137/0326005 | MR 0923304 | Zbl 0646.93049
[5] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 651–659 DOI 10.1109/TAC.1967.1098737
[6] Herrera A.: Sur le decouplage des systemes lineaires par des lois statiques non regulieres. PhD Thesis, Université de Nantes, Ecole Centrale Nantes 1991
[7] Herrera A., Torres J. A., Ruiz-León J.: The nonregular Morgan’s problem: A polynomial solution for the case of two outputs. In: Proc. European Control Conference (ECC’93), Groningen 1993, pp. 2275–2278
[8] G. J. C. Martínez, Malabre M.: The row by row decoupling problem with stability: A structural approach. IEEE Trans. Automat. Control 39 (1994), 2457–2460 DOI 10.1109/9.362849 | MR 1337570 | Zbl 0825.93252
[9] Morse A. S.: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 446–465 DOI 10.1137/0311037 | MR 0386762 | Zbl 0259.93011
[10] Ruiz-León J., Zagalak, P., Eldem V.: On the Morgan problem with stability. Kybernetika 32 (1996), 425–441 MR 1420133
[11] Vidyasagar M.: Control System Synthesis: A Factorization Approach. MIT Press, Cambridge, MA 1985 MR 0787045 | Zbl 0655.93001
[12] Wolovich W. A., Falb P. L.: Invariants and canonical forms under dynamic compensation. SIAM J. Control Optim. 14 (1976), 996–1008 DOI 10.1137/0314063 | MR 0424306 | Zbl 0344.93019
Partner of
EuDML logo