Previous |  Up |  Next

Article

Keywords:
optimal decoupling of signal; discrete-time system
Summary:
The synthesis of a feedforward unit for $H_2$ optimal decoupling of measurable or previewed signals in discrete-time linear time-invariant systems is considered. It is shown that an $H_2$ optimal compensator can be achieved by connecting a finite impulse response (FIR) system and a stable dynamic unit. To derive the FIR system convolution profiles an easily implementable computational scheme based on pseudoinversion (possibly nested to avoid computational constraints) is proposed, while the dynamic unit is derived by solving a standard LQR problem, in general cheap or singular.
References:
[1] Barbagli F., Marro, G., Prattichizzo D.: Solving signal decoupling problems through self-bounded controlled invariants. In: Proc. 39th IEEE Conference on Decision and Control (CDC 2000), Sydney 2000
[2] Basile G., Marro G.: L’invarianza rispetto ai disturbi studiata nello spazio degli stati. In: Rendiconti della LXX Riunione Annuale AEI, paper no. 1-4-01, Rimini 1969
[3] Basile G., Marro G.: Controlled and conditioned invariant subspaces in linear system theory. J. Optim. Theory Appl. 3 (1969), 5, 306–315 DOI 10.1007/BF00931370 | MR 0246661 | Zbl 0172.12501
[4] Basile G., Marro G.: A new characterization of some structural properties of linear systems: unknown-input observability, invertibility and functional controllability. Internat. J. Control 17 (1973), 5, 931–943 DOI 10.1080/00207177308932438 | MR 0325195 | Zbl 0255.93009
[5] Basile G., Hamano, F., Marro G.: Some new results on unknown input observability. In: Proc. Eighth Triennial World Congress of the International Federation of Automatic Control, Kyoto, Japan 1981, pp. 21–25
[6] Basile G., Marro G.: Controlled and Conditioned Invariants in Linear System Theory. Prentice Hall, Englewood Cliffs, NJ 1992 MR 1149379 | Zbl 0758.93002
[7] Bhattacharyya S. P.: Disturbance rejection in linear systems. Internat. J. Systems Science 5 (1974), 7, 931–943 MR 0363580 | Zbl 0295.93003
[8] Bitmead R. R., Gevers, M., Wertz V.: Adaptive Optimal Control-The Thinking Man’s GPC. Prentice Hall, Englewood Cliffs, NJ, 1990 Zbl 0751.93052
[9] Estrada M. Bonilla, Malabre M.: Necessary and sufficient conditions for disturbance decoupling with stability using PID control laws. IEEE Trans. Automat. Control AC-44 (1999), 6, 1311–1315 DOI 10.1109/9.769398 | MR 1689159
[10] Estrada M. Bonilla, Malabre M.: Structural conditions for disturbance decoupling with stability using proportional and derivative control laws. IEEE Trans. Automat. Control AC-46 (2001), 1, 160–165 DOI 10.1109/9.898711 | MR 1809481
[11] Chen B. M.: $H_\infty $ control and its applications. (Lecture Notes in Control and Inform. Sciences 235.), Springer–Verlag, New York 1999 MR 1636909 | Zbl 0912.93003
[12] Chen B. M.: Robust and $H_\infty $ Control. (Communications and Control Engineering Series.) Springer, New York 2000 MR 1761689 | Zbl 0996.93002
[13] Davison E. J., Scherzinger B. M.: Perfect control of the robust servomechanism problem. IEEE Trans. Automat. Control AC-32 (1987), 8, 689–701 Zbl 0625.93051
[14] Nicolao G. De, Strada S.: On the stability of receding-horizon LQ control with zero-state terminal constraint. IEEE Trans. Automat. Control 42 (1997), 2, 257–260 DOI 10.1109/9.554406 | MR 1438456 | Zbl 0880.93042
[15] Devasia S., Chen, D., Paden B.: Nonlinear inversion-based output tracking. IEEE Trans. Automat. Control 41 (1996), 7, 930–942 DOI 10.1109/9.508898 | MR 1398777 | Zbl 0859.93006
[16] Dorato P.: On the inverse of linear dynamical systems. IEEE. Trans. System Sci. and Cybernetics SSC-5 (1969), 1, 43–48 DOI 10.1109/TSSC.1969.300243 | Zbl 0184.18402
[17] Francis B. A.: The optimal linear quadratic time invariant regulator with cheap control. IEEE Trans. Automat. Control AC-24 (1979), 616–621 DOI 10.1109/TAC.1979.1102097 | MR 0538820 | Zbl 0424.49022
[18] Gross E., Tomizuka M.: Experimental flexible beam tip tracking control with a truncated series approximation to uncancelable inverse dynamics. IEEE Trans. Control Syst. Techn. 3 (1994), 4, 382–391 DOI 10.1109/87.338659
[19] Hunt L. R., Meyer, G., Su R.: Noncausal inverses for linear systems. IEEE Trans. Automat. Control 41 (1996), 4, 608–611 DOI 10.1109/9.489285 | MR 1385335 | Zbl 0864.93055
[20] Imai H., Shinozuka M., Yamaki T., Li, D., Kuwana M.: Disturbance decoupling by feedforward and preview control. Trans. ASME J. Dynamic Systems, Measurement Control 105 (1983), 3, 11–17 DOI 10.1115/1.3139721 | Zbl 0512.93029
[21] Kwon W. H., Pearson A. E.: On feedback stabilization of time-varying discrete linear systems. IEEE Trans. Automat. Control AC-23 (1978), 3, 479–481 DOI 10.1109/TAC.1978.1101749 | MR 0496918 | Zbl 0378.93038
[22] Malabre M., Kučera V.: Infinite structure and exact model matching problem: a geometric approach. IEEE Trans. Automat. Control AC-29 (1982), 3, 266–268 DOI 10.1109/TAC.1984.1103502
[23] Marro G., Fantoni M.: Using preaction with infinite or finite preview for perfect or almost perfect digital tracking. In: Proceedings of the Melecon’96 – 8th Mediterranean Electrotechnical Conference, Bari 1996, Vol. 1, pp. 246–249
[24] Marro G., Prattichizzo, D., Zattoni E.: Geometric insight into discrete-time cheap and singular linear quadratic Riccati (LQR) problems. IEEE Trans. Automat. Control 47 (2002), 1 DOI 10.1109/9.981727 | MR 1879695
[25] Marro G., Prattichizzo, D., Zattoni E.: ${H}_2$ optimal decoupling of previewed signals with FIR systems. In: Proc. 1st IFAC Symposium on System Structure and Control (SSSC 2001), (P. Horáček, ed.), Prague 2001
[26] Marro G., Prattichizzo, D., Zattoni E.: A unified algorithmic setting for signal–decoupling compensators and unknown–input observers. In: Proc. 39th Conference on Decision and Control (CDC 2000), Sydney 2000
[27] Marro G., Prattichizzo, D., Zattoni E.: A nested computational scheme for discrete-time cheap and singular LQ control. In: Proc. 16th IMACS World Congress on Scientific Computation, Applied Mathematics and Simulation (IMACS 2000), Lausanne 2000
[28] Marro G., Prattichizzo, D., Zattoni E.: Convolution profiles for noncausal inversion of multivariable discrete-time systems. In: Proc. 8th IEEE Mediterranean Conference on Control & Automation (MED 2000), (P. P. Groumpos, N. T. Koussoulas, and P. J. Antsaklis, eds.), University of Patras, Rio 2000
[29] Marro G., Prattichizzo, D., Zattoni E.: An algorithmic solution to the discrete-time cheap and singular LQR problems. In: Proc. 14th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2000), Perpignan 2000
[30] Morse A. S.: Structural invariants of linear multivariable systems. SIAM J. Control 11 (1973), 3, 446–465 DOI 10.1137/0311037 | MR 0386762 | Zbl 0259.93011
[31] Park S. H., Kim P. S., Kwon O.-K., Kwon W. H.: Estimation and detection of unknown inputs using optimal FIR filter. Automatica 36 (2000), 1481–1488 DOI 10.1016/S0005-1098(00)00063-7 | MR 1829760 | Zbl 0959.93517
[32] Qiu L., Davison E. J.: Performance limitations of non-minimum phase systems in the servomechanism problem. IEEE Trans. Automat. Control 29 (1993), 2, 337–349 MR 1211291 | Zbl 0778.93053
[33] Saberi A., Sannuti, P., Chen B. M.: $H_2$ Optimal Control. (System and Control Engineering.) Prentice Hall International, London 1995
[34] Saberi A., Stoorvogel A. A., Sannuti P.: Control of linear systems with regulation and input constraints. (Communications and Control Engineering Series.) Springer, New York 2000 MR 1756793 | Zbl 0977.93001
[35] Sain M. K., Massey J. L.: Invertibility of linear time-invariant dynamical systems. IEEE Trans. Automat. Control AC-14 (1969), 2, 141–149 DOI 10.1109/TAC.1969.1099133 | MR 0246664
[36] Silverman L.: Inversion of multivariable linear systems. IEEE Trans. Automat. Control AC-14 (1969), 3, 270–276 DOI 10.1109/TAC.1969.1099169 | MR 0267927
[37] Trentelman H. L., Stoorvogel A. A., Hautus M.: Control theory for linear systems. (Communications and Control Engineering Series.) Springer, New York 2001 MR 1851149 | Zbl 0963.93004
[38] Willems J. C.: Feedforward control, PID control laws, and almost invariant subspaces. Systems Control Lett. 1 (1982), 4, 277–282 DOI 10.1016/S0167-6911(82)80012-1 | MR 0670212 | Zbl 0473.93032
[39] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer, New York 1985 MR 0770574 | Zbl 0609.93001
[40] Wonham W. M., Morse A. S.: Decoupling and pole assignment in linear multivariable systems: a geometric approach. SIAM J. Control 8 (1970), 1, 1–18 DOI 10.1137/0308001 | MR 0270771 | Zbl 0206.16404
Partner of
EuDML logo