Previous |  Up |  Next

Article

Keywords:
outliers; smoothing algorithm; parameters estimation
Summary:
The impact of additive outliers on a performance of the Kalman filter is discussed and less outlier-sensitive modification of the Kalman filter is proposed. The improved filter is then used to obtain an improved smoothing algorithm and an improved state-space model parameters estimation.
References:
[1] Anderson B. D. O., Moore J. B.: Optimal Filtering. Prentice–Hall, Englewood Cliffs, N. J. 1979 Zbl 1191.93133
[2] Box G. E. P., Tiao G. C.: Bayesian Inference in Statistical Analysis. Addison–Wesley, London 1973 MR 0418321 | Zbl 0850.62004
[3] Cantarelis N., Johnston F. R.: On-line variance estimation for the steady state Bayesian forecasting model. J. Time Ser. Analysis 3 (1982), 225–234 DOI 10.1111/j.1467-9892.1982.tb00345.x | MR 0703085 | Zbl 0502.62084
[4] Cipra T.: Some modifications of recursive time series methods. In: ROBUST ’96 – Collection of Discussion Papers, Union of the Czech Mathematicians and Physicists, Praha 1997
[5] Cipra T., Rubio A.: Kalman filter with a non-linear non-gaussian observation relation. Trabajos de Estadistica 6 (1991), 111–119 DOI 10.1007/BF02873526 | Zbl 0748.62052
[6] Cipra T., Rubio, A., Canal J. L.: Robust smoothing and forecasting procedures. Central European J. Oper. Research 1 (1992), 41–56
[7] Durbin J., Koopman S. J.: Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J. Roy. Statist. Soc. 62 (2000), 3–56 DOI 10.1111/1467-9868.00218 | MR 1745604
[8] Franěk P.: Kalman Filter. KPMS Seminair Works Series, MFF UK, Praha 1999
[9] Hosking J. R. M., Pai J. S., Wu L. S.+ Y.: An algorithm for estimating parameters of state-space models. Statist. Probab. Letters 28 (1996), 99–106 DOI 10.1016/0167-7152(95)00098-4 | MR 1394658 | Zbl 0852.62090
[10] Jazwinski A. H.: Stochastic Processes and Filtering Theory. Academic Press, New York 1972 Zbl 0203.50101
[11] Kalman R. E.: A new approach to linear filtering and prediction problems. Trans. Amer. Soc. Mech. Eng. – J. Basic Eng. 82 (1960), 35–45 DOI 10.1115/1.3662552
[12] Kitagawa G.: Non-Gaussian state-space modelling of nonstationary time series. J. Amer. Statist. Assoc. 82 (1987), 1032–1050 MR 0922169 | Zbl 0644.62088
[13] Kitagawa G.: Self-organizing state-space model. J. Amer. Statist. Assoc. 93 (1998), 1203-1215 DOI 10.2307/2669862
[14] Künsch H. R.: State space and hidden Markov models. In: Complex Stochastic Systems (O. E. Barndorf-Nielsen, D. R. Cox, and C. Klüppelberg, eds.), Chapman & Hall / CRC, Boca Raton 2001, pp. 109–173 MR 1893412 | Zbl 1002.62072
[15] Masreliez C. J.: Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. Automat. Control AC-20 (1975), 107–110 DOI 10.1109/TAC.1975.1100882 | Zbl 0298.93018
[16] Masreliez C. J., Martin R. D.: Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control AC-22 (1975), 361–371 DOI 10.1109/TAC.1977.1101538 | MR 0453124
[17] Meinhold R. J., Singpurwalla N. Z.: Robustification of the Kalman filter. J. Amer. Statist. Assoc. 84 (1989), 479–486 DOI 10.1080/01621459.1989.10478794 | MR 1010336
[18] Ruckdeschel P.: Ansätze zur Robustifizierung des Kalman-filters. Doctoral Thesis, Bayreuth University, Bayreuth 2001 MR 1884972 | Zbl 0995.93001
[19] Tanizaki H.: Nonlinear and non-Gaussian state estimation: A quasi-optimal estimator. Comm. Statist. – Theory Methods 29 (2000), 2805–2834 DOI 10.1080/03610920008832638 | MR 1804265 | Zbl 1016.93068
Partner of
EuDML logo