[1] Anderson B. D. O., Moore J. B.:
Optimal Filtering. Prentice–Hall, Englewood Cliffs, N. J. 1979
Zbl 1191.93133
[2] Box G. E. P., Tiao G. C.:
Bayesian Inference in Statistical Analysis. Addison–Wesley, London 1973
MR 0418321 |
Zbl 0850.62004
[4] Cipra T.: Some modifications of recursive time series methods. In: ROBUST ’96 – Collection of Discussion Papers, Union of the Czech Mathematicians and Physicists, Praha 1997
[6] Cipra T., Rubio, A., Canal J. L.: Robust smoothing and forecasting procedures. Central European J. Oper. Research 1 (1992), 41–56
[7] Durbin J., Koopman S. J.:
Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives. J. Roy. Statist. Soc. 62 (2000), 3–56
DOI 10.1111/1467-9868.00218 |
MR 1745604
[8] Franěk P.: Kalman Filter. KPMS Seminair Works Series, MFF UK, Praha 1999
[10] Jazwinski A. H.:
Stochastic Processes and Filtering Theory. Academic Press, New York 1972
Zbl 0203.50101
[11] Kalman R. E.:
A new approach to linear filtering and prediction problems. Trans. Amer. Soc. Mech. Eng. – J. Basic Eng. 82 (1960), 35–45
DOI 10.1115/1.3662552
[12] Kitagawa G.:
Non-Gaussian state-space modelling of nonstationary time series. J. Amer. Statist. Assoc. 82 (1987), 1032–1050
MR 0922169 |
Zbl 0644.62088
[13] Kitagawa G.:
Self-organizing state-space model. J. Amer. Statist. Assoc. 93 (1998), 1203-1215
DOI 10.2307/2669862
[14] Künsch H. R.:
State space and hidden Markov models. In: Complex Stochastic Systems (O. E. Barndorf-Nielsen, D. R. Cox, and C. Klüppelberg, eds.), Chapman & Hall / CRC, Boca Raton 2001, pp. 109–173
MR 1893412 |
Zbl 1002.62072
[16] Masreliez C. J., Martin R. D.:
Robust Bayesian estimation for the linear model and robustifying the Kalman filter. IEEE Trans. Automat. Control AC-22 (1975), 361–371
DOI 10.1109/TAC.1977.1101538 |
MR 0453124
[18] Ruckdeschel P.:
Ansätze zur Robustifizierung des Kalman-filters. Doctoral Thesis, Bayreuth University, Bayreuth 2001
MR 1884972 |
Zbl 0995.93001