[1] Boyd S. P., Barratt C. H.:
Linear Controller Design: Limits of Performance. Prentice Hall, Englewood Cliffs, N. J. 1991
Zbl 0748.93003
[4] Francis B. A.:
A Course in ${H}_\infty $ Control Theory. (Lecture Notes in Control and Information Sciences 88.) Springer–Verlag, New York 1987
MR 0932459
[5] Dahleh M. A., Diaz-Bobillo I. J.:
Control of Uncertain Systems: A Linear Programming Approach. Prentice Hall, Englewood Cliffs, N. J. 1995
Zbl 0838.93007
[6] Gundes A. N., Desoer C. A.:
Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators. Springer–Verlag, Heidelberg 1990
MR 1055359
[7] Goodwin G. C., Seron M. M., Salgado M. E.: ${\mathcal {H}}_2$ design of decentralized controllers. In: Proc. American Control Conference, San Diego 1999
[8] Khammash M.: Solution of the $\ell _1$ optimal control problem without zero interpolation. In: Proc. Control Decision Conference, Kobe 1996; IEEE Trans. Automat. Control, to appear
[11] Salapaka M. V., Khammash M., Dahleh M.: Solution of MIMO ${\mathcal {H}}_2/\ell _1$ problem without zero interpolation. In: Proc. Control Decision Conference, San Diego 1997
[12] Ünyelioģlu K. A., Özgüner U.:
${\mathcal {H}}_\infty $ sensitivity minimization using decentralized feedback: 2-input 2-output systems. Systems Control Lett. (1994), 99–109
MR 1261849
[13] Qi X., Khammash M. H., Salapaka M. V.: Optimal controller synthesis with multiple objectives. In: Proc. 2001 American Control Conference, Arlington 2001, pp. 2730–2735
[14] Qi X., Khammash M. H., Salapaka M. V.: A Matlab package for multiobjective control synthesis. In: IEEE Conference on Decision and Control 2001, to appear
[15] Quek C. K., Loh A. P.:
Robust decoupling of discrete systems using $\ell _1$ optimization. IEEE Trans. Automat. Control 42 (1997), 549–553
DOI 10.1109/9.566667 |
MR 1442592