Previous |  Up |  Next

Article

Keywords:
linear regression; $M$-test procedure; asymptotics
Summary:
Regression- and scale-invariant $M$-test procedures for detection of structural changes in linear regression model was developed and their limit behavior under the null hypothesis was studied in Hušková [9]. In the present paper the limit behavior under local alternatives is studied. More precisely, it is shown that under local alternatives the considered test statistics have asymptotically normal distribution.
References:
[1] Billingsley P.: Convergence of Probability Measures. Wiley, New York 1968 MR 0233396 | Zbl 0944.60003
[2] Csörgő M., Horváth L.: Weighted Approximations in Probability and Statistics. Wiley, New York 1993 MR 1215046
[3] Csörgő M., Horváth L.: Limit Theorems in Change-point Analysis. Wiley, New York 1997 MR 2743035
[4] Horváth L.: Detecting changes in linear regressions. Statistics 26 (1995), 189–208 DOI 10.1080/02331889508802489 | MR 1365672 | Zbl 0812.62074
[5] Huber P. J.: Robust Statistics. Wiley, New York 1981 MR 0606374
[6] Hušková M.: Some sequential procedures based on regression rank scores. Nonparametric Statistics 3 (1994), 285–298 DOI 10.1080/10485259408832588 | MR 1291550
[7] Hušková M.: Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534 MR 1456754 | Zbl 0933.62040
[8] Hušková M.: $L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes – Monograph Ser. 31), Institute of Mathematical Statistics, Beachwood 1997, pp. 56–70 Zbl 0935.62052
[9] Hušková M.: Some invariant test procedures for detection of structural changes. Kybernetika 36 (2000), 401–414 MR 1830646
[10] Jandhyala V. K., MacNeill I. B.: Residual partial sum limit process for regression models with applications to detecting parameter changes at unknown times. Stoch. Process. Appl. 33 (1989), 309–323 DOI 10.1016/0304-4149(89)90045-8 | MR 1030215 | Zbl 0679.62056
[11] Jurečková J., Sen P. K.: On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions, Suplement Issue 1 (1984), 31–41 MR 0785200 | Zbl 0586.62042
[12] Jurečková J., Sen P. K.: Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg, 1994, pp. 111–122 MR 1311932
[13] Ploberger W., Krämer, W., Kontrus K.: A new test for structural stability in linear regression model. J. Econometrics 40 (1989), 307–318 DOI 10.1016/0304-4076(89)90087-0 | MR 0994952
[14] Quandt R. E.: Tests of hypothesis that a linear regression systems obeys two separate regimes. J. Amer. Statist. Assoc. 55 (1960), 324–330 DOI 10.1080/01621459.1960.10482067 | MR 0114269
[15] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation. Charles University, Prague 1999
[16] Worsley K. J.: Testing for a two-phase multiple regression. Technometrics 25 (1983), 35–42 DOI 10.1080/00401706.1983.10487817 | MR 0694210 | Zbl 0508.62061
Partner of
EuDML logo