[2] Csörgő M., Horváth L.:
Weighted Approximations in Probability and Statistics. Wiley, New York 1993
MR 1215046
[3] Csörgő M., Horváth L.:
Limit Theorems in Change-point Analysis. Wiley, New York 1997
MR 2743035
[5] Huber P. J.:
Robust Statistics. Wiley, New York 1981
MR 0606374
[7] Hušková M.:
Limit theorems for $M$-processes via rank statistics processes. In: Advances in Combinatorial Methods with Applications to Probability and Statistics (N. Balakrishnan, ed.), Birkhäuser, Boston 1997, pp. 521–534
MR 1456754 |
Zbl 0933.62040
[8] Hušková M.:
$L_1$-test procedures for detection of change. In: $L_1$-Statistical Procedures and Related Topics (IMS Lecture Notes – Monograph Ser. 31), Institute of Mathematical Statistics, Beachwood 1997, pp. 56–70
Zbl 0935.62052
[9] Hušková M.:
Some invariant test procedures for detection of structural changes. Kybernetika 36 (2000), 401–414
MR 1830646
[11] Jurečková J., Sen P. K.:
On adaptive scale-equivariant $M$-estimators in linear models. Statist. Decisions, Suplement Issue 1 (1984), 31–41
MR 0785200 |
Zbl 0586.62042
[12] Jurečková J., Sen P. K.:
Regression rank scores scale statistics and studentization in linear models. In: Asymptotic Statistics (M. Hušková and P. Mandl, eds.), Physica–Verlag, Heidelberg, 1994, pp. 111–122
MR 1311932
[15] Víšek T.: Detection of Changes in Econometric Models. Ph.D. Dissertation. Charles University, Prague 1999