[1] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.:
Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia 1994
MR 1284712 |
Zbl 0816.93004
[4] Doyle J. C., Wall, J., Stein G.: Performance and robustness analysis for structured uncertainty. In: IEEE Conference on Decision and Control 1982, pp. 629–636
[5] Gahinet P., Nemirovski A., Laub A. J., Chilali M.: LMI Control Toolbox for use with MATLAB. Natick, MA MathWorks, 1995
[7] Gu K.: Stability of linear time-delay systems with block-diagonal uncertainty. In: 1998 American Control Conference, Philadelphia 1998, pp. 1943–1947
[9] Gu K.: Partial solution of LMI in stability problem of time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control 1999, pp. 227–232
[11] Gu K.: An integral inequality in the stability problem of time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control 2000
[13] Gu K., Han Q.-L.: Discretized Lyapunov functional for linear uncertain systems with time-varying delay. In: 2000 American Control Conference, Chicago 2000
[15] Gu K., Luo A. C. J., Niculescu S.-I.: Discretized Lyapunov functional for systems with distributed delay. In: 1999 European Control Conference, Karlsruhe 1999
[17] Gu K., Niculescu S.-I.:
Further remarks on additional dynamics in various model transformations of linear delay systems. In: 2000 American Control Conference, Chicago 2000
MR 1819827 |
Zbl 1056.93511
[18] Hale J. K., Lunel S. M. Verduyn:
Introduction to Functional Differential Equations. Springer–Verlag, New York 1993
MR 1243878
[19] Han Q.-L., Gu K.:
On robust stability of time-delay systems with norm-bounded uncertainty. IEEE Trans. Automat. Control, accepted
MR 1853685 |
Zbl 1006.93054
[20] Han Q.-L., Gu K.: Stability of linear systems with time-varying delay: a generalized discretized Lyapunov functional approach. Asian J. of Control, accepted
[23] Kharitonov V.: Robust stability analysis of time delay systems: A survey. In: Proc. IFAC System Structure Control, Nantes 1998
[24] Kharitonov V. L., Melchor–Aguilar D. A.: Some remarks on model transformations used for stability and robust stability analysis of time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1142–1147
[25] Kolmanovskii V. B., Niculescu S.-I., Gu K.: Delay effects on stability: a survey. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1993–1998
[26] Kolmanovskii V. B., Richard J.-P.: Stability of some systems with distributed delays. In: JESA, special issue on “Analysis and Control of Time-delay Systems”, 31 (1997), 971–982
[29] Nesterov Y., Nemirovskii A.:
Interior–Point Polynomial Algorithms in Convex Programming SIAM, Philadelphia 199.
MR 1258086
[30] Niculescu S. I., Dugard, L., Dion J. M.: Stabilité et stabilisation robustes des systèmes à retard. In: Proc. Journées Robustesse, Toulouse 1995
[31] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust stability and stabilization of uncertain linear systems with state delay: single delay case (I), and Multiple delays case (II). In: Proc. IFAC Workshop Robust Control Design, Rio de Janeiro 1994, pp. 469–474 and 475–480
[32] Niculescu S. I., Verriest E. I., Dugard, L., Dion J. M.:
Stability and robust stability of time-delay systems: A guided tour. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences), Springer–Verlag, London 1997, pp. 1–71
MR 1482571
[34] Zhou K., Doyle J. C., Glover K.:
Robust and Optimal Control. Prentice Hall, Englewood Cliffs, N.J. 1996
Zbl 0999.49500