Previous |  Up |  Next

Article

Keywords:
time-delay system; Lyapunov-Krasovskii functional; multiple delays
Summary:
This article gives an overview of discretized Lyapunov functional methods for time-delay systems. Quadratic Lyapunov–Krasovskii functionals are discretized by choosing the kernel to be piecewise linear. As a result, the stability conditions may be written in the form of linear matrix inequalities. Conservatism may be reduced by choosing a finer mesh. Simplification techniques, including elimination of variables and using integral inequalities are also discussed. Systems with multiple delays and distributed delays are also treated. Finally, the treatment of uncertainties and input-output performance requirements are discussed.
References:
[1] Boyd S., Ghaoui L. El, Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia 1994 MR 1284712 | Zbl 0816.93004
[2] Boyd S., Yang Q.: Structured and simultaneous Lyapunov functions for system stability problems. Internat. J. Control 49 (1989), 2215–2240 DOI 10.1080/00207178908559769 | MR 1007704 | Zbl 0729.93067
[3] Souza C. E. De, Li X.: Delay-dependent robust $H_{\infty }$ control of uncertain linear state-delayed systems. Automatica 35 (1999), 1313–1321 DOI 10.1016/S0005-1098(99)00025-4 | MR 1829975
[4] Doyle J. C., Wall, J., Stein G.: Performance and robustness analysis for structured uncertainty. In: IEEE Conference on Decision and Control 1982, pp. 629–636
[5] Gahinet P., Nemirovski A., Laub A. J., Chilali M.: LMI Control Toolbox for use with MATLAB. Natick, MA MathWorks, 1995
[6] Gu K.: Discretized LMI set in the stability problem of linear uncertain time-delay systems. Internat. J. Control 68 (1997), 923–934 DOI 10.1080/002071797223406 | MR 1689707
[7] Gu K.: Stability of linear time-delay systems with block-diagonal uncertainty. In: 1998 American Control Conference, Philadelphia 1998, pp. 1943–1947
[8] Gu K.: Discretized Lyapunov functional for uncertain systems with multiple time-delay. Internat. J. Control 72 (1999), 16, 1436–1445 DOI 10.1080/002071799220092 | MR 1723330 | Zbl 0959.93053
[9] Gu K.: Partial solution of LMI in stability problem of time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control 1999, pp. 227–232
[10] Gu K.: A generalized discretization scheme of Lyapunov functional in the stability problem of linear uncertain time-delay systems. Internat. J. Robust and Nonlinear Control 9 (1999), 1–14 DOI 10.1002/(SICI)1099-1239(199901)9:1<1::AID-RNC382>3.0.CO;2-S | MR 1669772 | Zbl 0923.93046
[11] Gu K.: An integral inequality in the stability problem of time-delay systems. In: Proc. 39th IEEE Conference on Decision and Control 2000
[12] Gu K.: A further refinement of discretized Lyapunov functional method for the stability of time-delay systems. Internat. J. Control 74 (2001), 10, 967–976 DOI 10.1080/00207170110047190 | MR 1847365 | Zbl 1015.93053
[13] Gu K., Han Q.-L.: Discretized Lyapunov functional for linear uncertain systems with time-varying delay. In: 2000 American Control Conference, Chicago 2000
[14] Gu K., Han Q.-L., Luo A. C. J., Niculescu S.-I.: Discretized Lyapunov functional for systems with distributed delay and piecewise constant coefficients. Internat. J. Control 74 (2001), 7, 737–744 DOI 10.1080/00207170010031486 | MR 1826755 | Zbl 1015.34061
[15] Gu K., Luo A. C. J., Niculescu S.-I.: Discretized Lyapunov functional for systems with distributed delay. In: 1999 European Control Conference, Karlsruhe 1999
[16] Gu K., Niculescu S.-I.: Additional dynamics in transformed time-delay systems. IEEE Trans. Automat. Control 45 (2000), 572–575 DOI 10.1109/9.847747 | MR 1762880 | Zbl 0986.34066
[17] Gu K., Niculescu S.-I.: Further remarks on additional dynamics in various model transformations of linear delay systems. In: 2000 American Control Conference, Chicago 2000 MR 1819827 | Zbl 1056.93511
[18] Hale J. K., Lunel S. M. Verduyn: Introduction to Functional Differential Equations. Springer–Verlag, New York 1993 MR 1243878
[19] Han Q.-L., Gu K.: On robust stability of time-delay systems with norm-bounded uncertainty. IEEE Trans. Automat. Control, accepted MR 1853685 | Zbl 1006.93054
[20] Han Q.-L., Gu K.: Stability of linear systems with time-varying delay: a generalized discretized Lyapunov functional approach. Asian J. of Control, accepted
[21] Huang W.: Generalization of Liapunov’s theorem in a linear delay system. J. Math. Anal. Appl. 142 (1989), 83–94 DOI 10.1016/0022-247X(89)90166-2 | MR 1011411 | Zbl 0705.34084
[22] Infante E. F., Castelan W. V.: A Lyapunov functional for a matrix difference-differential equation. J. Differential Equations 29 (1978), 439–451 DOI 10.1016/0022-0396(78)90051-7 | MR 0507489
[23] Kharitonov V.: Robust stability analysis of time delay systems: A survey. In: Proc. IFAC System Structure Control, Nantes 1998
[24] Kharitonov V. L., Melchor–Aguilar D. A.: Some remarks on model transformations used for stability and robust stability analysis of time-delay systems. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1142–1147
[25] Kolmanovskii V. B., Niculescu S.-I., Gu K.: Delay effects on stability: a survey. In: Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999, pp. 1993–1998
[26] Kolmanovskii V. B., Richard J.-P.: Stability of some systems with distributed delays. In: JESA, special issue on “Analysis and Control of Time-delay Systems”, 31 (1997), 971–982
[27] Krasovskii N. N.: Stability of Motion. Stanford University Press, 1963 MR 0147744 | Zbl 0109.06001
[28] Li X., Souza C. E. de: Criteria for robust stability and stabilization of uncertain linear systems with state delay. Automatica 33 (1997), 1657–1662 DOI 10.1016/S0005-1098(97)00082-4 | MR 1481824
[29] Nesterov Y., Nemirovskii A.: Interior–Point Polynomial Algorithms in Convex Programming SIAM, Philadelphia 199. MR 1258086
[30] Niculescu S. I., Dugard, L., Dion J. M.: Stabilité et stabilisation robustes des systèmes à retard. In: Proc. Journées Robustesse, Toulouse 1995
[31] Niculescu S. I., Souza C. E. de, Dion J. M., Dugard L.: Robust stability and stabilization of uncertain linear systems with state delay: single delay case (I), and Multiple delays case (II). In: Proc. IFAC Workshop Robust Control Design, Rio de Janeiro 1994, pp. 469–474 and 475–480
[32] Niculescu S. I., Verriest E. I., Dugard, L., Dion J. M.: Stability and robust stability of time-delay systems: A guided tour. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds., Lecture Notes in Control and Information Sciences), Springer–Verlag, London 1997, pp. 1–71 MR 1482571
[33] Packard A., Doyle J.: The complex structured singular value. Automatica 29 (1993), 71–109 DOI 10.1016/0005-1098(93)90175-S | MR 1200542 | Zbl 0772.93023
[34] Zhou K., Doyle J. C., Glover K.: Robust and Optimal Control. Prentice Hall, Englewood Cliffs, N.J. 1996 Zbl 0999.49500
Partner of
EuDML logo