Previous |  Up |  Next

Article

Keywords:
output feedback controller; LMI based algorithm
Summary:
In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix, including a decentralized one, can be prescribed by the designer. In this way the decentralized output feedback controller can be designed.
References:
[1] Benton I. E., Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization. Internat. J. Control 72 (1999), 14, 1322–1330 DOI 10.1080/002071799220290 | MR 1712166 | Zbl 0960.93048
[2] Boyd S., Ghaoui L. El, Feron E., Balakrishnam V.: Linear matrix inequalities in system and control theory. SIAM 15 (1994), Philadelphia MR 1284712
[3] Blondel V., Gevers M., Lindquist A.: Survey on the state of systems and control. European J. Control 1 (1995), 5, 2–23 DOI 10.1016/S0947-3580(95)70004-8 | Zbl 1177.93001
[4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization. In: Proc. of the 33rd Conference on Decision and Control, Lake Buena Vista 1994, pp. 2678–2683
[5] Geromel J. C., Peres P. L. D.: Decentralized load-frequency control. Proc. IEE–D 132 (1985), 225–230
[6] Goh K. C., Safonov M. G., Ly J. H.: Robust synthesis via bilinear matrix inequalities. Internat. J. Robust and Nonlinear Control 6 (1996), 1079–1095 DOI 10.1002/(SICI)1099-1239(199611)6:9/10<1079::AID-RNC270>3.0.CO;2-# | MR 1429443 | Zbl 0861.93015
[7] Goh K. G., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem. J. Global Optimization 7 (1995), 365–380 DOI 10.1007/BF01099648 | MR 1365801 | Zbl 0844.90083
[8] Iwasaki T., Skelton R. L., Geromel J. G.: Linear quadratic suboptimal control with static output feedback. Systems Control Lett. 23 (1994), 421–430 DOI 10.1016/0167-6911(94)90096-5 | MR 1304473 | Zbl 0873.49021
[9] Iwasaki T., Skelton R. E.: All controllers for the general $H_{\infty }$ control problem: LMI existence conditions and state space formulas. Automatica 30 (1994), 8, 1307–1314 MR 1288621
[10] Kose I. E., Jabbari F.: Robust control of linear systems with real parametric uncertainty. Automatica 35 (1999), 679–687 DOI 10.1016/S0005-1098(98)00184-8 | MR 1827393 | Zbl 0982.93033
[11] Kučera V., deSouza C. E.: A necessary and sufficient condition for output feedback stabilizability. Automatica 31 (1995), 9, 1357–1359 DOI 10.1016/0005-1098(95)00048-2 | MR 1349414
[12] Lankaster P.: Theory of Matrices. Academic Press, New York – London 1969 MR 0245579
[13] Yu, Li, Chu, Jian: An LMI approach to guaranteed cost control of linear uncertain time-delay systems. Automatica 35 (1999), 1155–1159 DOI 10.1016/S0005-1098(99)00007-2 | MR 1831625 | Zbl 1041.93530
[14] Rosinová D., Veselý V., Kučera V.: A necessary and sufficient condition for output feedback stabilizability of linear discrete-time systems. In: IFAC Conference Control System Design, Bratislava 2000, pp. 164–167
[15] Safonov M. G., Goh K. G., Ly J.: Control system synthesis via bilinear matrix inequalities. In: Proc. American Control Conf., Baltimore 1994, IEEE Press, New York, pp. 1–5
[16] Syrmos V. L., Abdalah C. T., Dorato P., Grigoriadis K.: Static output feedback – A survey. Automatica 33 (1997), 2, 125–137 DOI 10.1016/S0005-1098(96)00141-0 | MR 1436056
[17] Toker O., Özbay H.: On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback. In: Proc. ACC 1995, pp. 2525–2526
[18] Gao, Yong-Yan, Sun, You-Xian: Static output feedback simultaneous stabilization: LMI approach. Internat. J. Control 70 (1998), 5, 803–814 DOI 10.1080/002071798222145 | MR 1634668
Partner of
EuDML logo