Previous |  Up |  Next

Article

Keywords:
generalized Nash equilibrium problem; Cournot oligopoly problem
Summary:
A special class of generalized Nash equilibrium problems is studied. Both variational and quasi-variational inequalities are used to derive some results concerning the structure of the sets of equilibria. These results are applied to the Cournot oligopoly problem.
References:
[1] Arrow K., Debreu G.: Existence of equilibrium for competitive economy. Econometrica 22 (1954), 265–290 DOI 10.2307/1907353 | MR 0077069
[2] Baiocchi C., Capelo A.: Variational and Quasi-Variational Inequalities. Wiley, New York 1984 MR 0745619
[3] Cach J.: A Nonsmooth Approach to the Computation of Equilibria (in Czech). Diploma Thesis, Charles University, Prague 1996
[4] Chan D., Pang J.-S.: The generalized quasi-variational problem. Math. Oper. Res. 7 (1982), 211–222 DOI 10.1287/moor.7.2.211 | MR 0665558
[5] Debreu G.: A social equilibrium existence theorem. Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 886–893 DOI 10.1073/pnas.38.10.886 | MR 0050251 | Zbl 0047.38804
[6] Harker P. T.: A variational inequality approach for the determination of oligopolistic market equilibrium. Math. Programming 30 (1984), 105–111 DOI 10.1007/BF02591802 | MR 0755118 | Zbl 0559.90015
[7] Harker P. T.: Generalized Nash games and quasi-variational inequalities. European J. Oper. Res. 54 (1991), 81–94 DOI 10.1016/0377-2217(91)90325-P | Zbl 0754.90070
[8] Harker P. T., Pang J.-S.: Finite-dimensional variational inequalities and complementarity problems: a survey of theory, algorithms and applications. Math. Programming 60 (1990), 161–220 DOI 10.1007/BF01582255 | MR 1073707
[9] Ichiishi T.: Game Theory for Economic Analysis. Academic Press, New York 1983 MR 0700688 | Zbl 0522.90104
[10] Mosco V.: Implicit variational problems and quasi-variational inequalities. In: Nonlinear Operations and the Calculus of Variations – Summer School held in Bruxelles on 8–19 September 1975 (J. P. Gossez et al, ed., Lecture Notes in Mathematics 543.) Springer Verlag, Berlin 1976, pp. 83–156 MR 0513202
[11] Murphy F. H., Sherali H. D., Soyster A. L.: A mathematical programming approach for determining oligopolistic market equilibrium. Math. Programming 24 (1982), 92–106 DOI 10.1007/BF01585096 | MR 0667941 | Zbl 0486.90015
[12] Nash J.: Non-cooperative games. Ann. of Math. 54 (1951), 286–295 DOI 10.2307/1969529 | MR 0043432 | Zbl 0045.08202
[13] Outrata J. V., Kočvara M., Zowe J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints: Theory, Applications and Numerical Results. Kluwer, Dordrecht 1998 MR 1641213 | Zbl 0947.90093
[14] Outrata J. V., Zowe J.: A numerical approach to optimization problems with variational inequality constraints. Math. Programming 68 (1995), 105–130 DOI 10.1007/BF01585759 | MR 1312107 | Zbl 0835.90093
[15] Rosen J. B.: Existence and uniqueness of equilibrium points for concave n-person games. Econometrica 33 (1965), 520–534 DOI 10.2307/1911749 | MR 0194210 | Zbl 0142.17603
Partner of
EuDML logo