Previous |  Up |  Next

Article

Keywords:
controllability; integro-differential system; Banach space
Summary:
Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.
References:
[1] Balachandran K., Dauer J. P.: Controllability of Sobolev–type integrodifferential systems in Banach spaces. J. Math. Anal. Appl. 217 (1998), 335–348 DOI 10.1006/jmaa.1997.5725 | MR 1492093 | Zbl 0927.93015
[2] Balachandran K., Dauer J. P., Balasubramaniam P.: Local null controllability of nonlinear functional differential systems in Banach spaces. J. Optim. Theory Appl. 88 (1996), 61–75 DOI 10.1007/BF02192022 | MR 1367033
[3] Chukwu E. N., Lenhart S. M.: Controllability questions for nonlinear systems in abstract spaces. J. Optim. Theory Appl. 68 (1991), 437–462 DOI 10.1007/BF00940064 | MR 1097312 | Zbl 0697.49040
[4] Do V. N.: A note on approximate controllability of semilinear systems. Systems Control Lett. 12 (1989), 365–371 DOI 10.1016/0167-6911(89)90047-9 | MR 1000345 | Zbl 0679.93004
[5] Fitzgibbon W. E.: Semilinear integrodifferential equations in a Banach space. Nonlinear Anal. 4 (1980), 745-760 DOI 10.1016/0362-546X(80)90075-9 | MR 0582543
[6] Heard M. L.: An abstract semilinear hyperbolic Volterra integrodifferential equation. J. Math. Anal. Appl. 80 (1981), 175–202 DOI 10.1016/0022-247X(81)90101-3 | MR 0614252 | Zbl 0468.45011
[7] Kwun Y. C., Park J. Y., Ryu J. W.: Approximate controllability and controllability for delay Volterra systems. Bull. Korean Math. Soc. 28 (1991), 131–145 MR 1127732
[8] III J. H. Lightbourne, III S. M. Rankin: A partial functional differential equation of Sobolev-type. J. Math. Anal. Appl. 93 (1983), 328–337 DOI 10.1016/0022-247X(83)90178-6 | MR 0700149
[9] MacCamy R.: An integrodifferential equation with applications in heat flow. Quart. Appl. Math. 35 (1977/78), 1–19 MR 0452184
[10] Ntouyas S. K., Tsamatos P. Ch.: Global existence for semilinear evolution equations with nonlocal conditions. J. Math. Anal. Appl. 210 (1997), 679–687 DOI 10.1006/jmaa.1997.5425 | MR 1453198 | Zbl 0884.34069
[11] Ntouyas S. K.: Global existence for functional semilinear integrodifferential equations. Arch. Math. 34 (1998), 239–256 MR 1645312
[12] Naito K.: Controllability of semilinear control systems dominated by the linear part. SIAM J. Control Optim. 25 (1987), 715–722 DOI 10.1137/0325040 | MR 0885194 | Zbl 0617.93004
[13] Naito K.: Approximate controllability for trajectories of semilinear control systems. J. Optim. Theory Appl. 60 (1989), 57–65 DOI 10.1007/BF00938799 | MR 0981945 | Zbl 0632.93007
[14] Naito K.: On controllability for a nonlinear Volterra equation. Nonlinear Anal. Theory, Methods and Applications 18 (1992), 99–108 DOI 10.1016/0362-546X(92)90050-O | MR 1138645 | Zbl 0768.93011
[15] Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York 1983 MR 0710486 | Zbl 0516.47023
[16] Quinn M. D., Carmichael N.: An approach to nonlinear control problems using fixed point methods, degree theory, and pseudo-inverses. Numer. Funct. Anal. Optim. 7 (1984–1985), 197–219 MR 0767382
[17] Schaefer H.: Über die Methode der a Priori Schranken. Math. Ann. 129 (1955), 415–416 DOI 10.1007/BF01362380 | MR 0071723 | Zbl 0064.35703
[18] Webb G.: An abstract semilinear Volterra integrodifferential equation. Proc. Amer. Math. Soc. 69 (1978), 255–260 DOI 10.1090/S0002-9939-1978-0467214-4 | MR 0467214 | Zbl 0388.45012
[19] Yamamoto M., Park J. Y.: Controllability for parabolic equations with uniformly bounded nonlinear terms. J. Optim. Theory Appl. 66 (1990), 515–532 DOI 10.1007/BF00940936 | MR 1080262 | Zbl 0682.93012
[20] Zhou H. X.: Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim. 21 (1983), 551–565 DOI 10.1137/0321033 | MR 0704474 | Zbl 0516.93009
Partner of
EuDML logo